Alert button
Picture for Gábor Bella

Gábor Bella

Alert button

Lexical Diversity in Kinship Across Languages and Dialects

Aug 24, 2023
Hadi Khalilia, Gábor Bella, Abed Alhakim Freihat, Shandy Darma, Fausto Giunchiglia

Figure 1 for Lexical Diversity in Kinship Across Languages and Dialects
Figure 2 for Lexical Diversity in Kinship Across Languages and Dialects
Figure 3 for Lexical Diversity in Kinship Across Languages and Dialects
Figure 4 for Lexical Diversity in Kinship Across Languages and Dialects

Languages are known to describe the world in diverse ways. Across lexicons, diversity is pervasive, appearing through phenomena such as lexical gaps and untranslatability. However, in computational resources, such as multilingual lexical databases, diversity is hardly ever represented. In this paper, we introduce a method to enrich computational lexicons with content relating to linguistic diversity. The method is verified through two large-scale case studies on kinship terminology, a domain known to be diverse across languages and cultures: one case study deals with seven Arabic dialects, while the other one with three Indonesian languages. Our results, made available as browseable and downloadable computational resources, extend prior linguistics research on kinship terminology, and provide insight into the extent of diversity even within linguistically and culturally close communities.

Viaarxiv icon

Diversity and Language Technology: How Techno-Linguistic Bias Can Cause Epistemic Injustice

Jul 25, 2023
Paula Helm, Gábor Bella, Gertraud Koch, Fausto Giunchiglia

It is well known that AI-based language technology -- large language models, machine translation systems, multilingual dictionaries, and corpora -- is currently limited to 2 to 3 percent of the world's most widely spoken and/or financially and politically best supported languages. In response, recent research efforts have sought to extend the reach of AI technology to ``underserved languages.'' In this paper, we show that many of these attempts produce flawed solutions that adhere to a hard-wired representational preference for certain languages, which we call techno-linguistic bias. Techno-linguistic bias is distinct from the well-established phenomenon of linguistic bias as it does not concern the languages represented but rather the design of the technologies. As we show through the paper, techno-linguistic bias can result in systems that can only express concepts that are part of the language and culture of dominant powers, unable to correctly represent concepts from other communities. We argue that at the root of this problem lies a systematic tendency of technology developer communities to apply a simplistic understanding of diversity which does not do justice to the more profound differences that languages, and ultimately the communities that speak them, embody. Drawing on the concept of epistemic injustice, we point to the broader sociopolitical consequences of the bias we identify and show how it can lead not only to a disregard for valuable aspects of diversity but also to an under-representation of the needs and diverse worldviews of marginalized language communities.

* arXiv admin note: text overlap with arXiv:2307.13405 
Viaarxiv icon

Towards Bridging the Digital Language Divide

Jul 25, 2023
Gábor Bella, Paula Helm, Gertraud Koch, Fausto Giunchiglia

It is a well-known fact that current AI-based language technology -- language models, machine translation systems, multilingual dictionaries and corpora -- focuses on the world's 2-3% most widely spoken languages. Recent research efforts have attempted to expand the coverage of AI technology to `under-resourced languages.' The goal of our paper is to bring attention to a phenomenon that we call linguistic bias: multilingual language processing systems often exhibit a hardwired, yet usually involuntary and hidden representational preference towards certain languages. Linguistic bias is manifested in uneven per-language performance even in the case of similar test conditions. We show that biased technology is often the result of research and development methodologies that do not do justice to the complexity of the languages being represented, and that can even become ethically problematic as they disregard valuable aspects of diversity as well as the needs of the language communities themselves. As our attempt at building diversity-aware language resources, we present a new initiative that aims at reducing linguistic bias through both technological design and methodology, based on an eye-level collaboration with local communities.

Viaarxiv icon

The SIGMORPHON 2022 Shared Task on Morpheme Segmentation

Jun 15, 2022
Khuyagbaatar Batsuren, Gábor Bella, Aryaman Arora, Viktor Martinović, Kyle Gorman, Zdeněk Žabokrtský, Amarsanaa Ganbold, Šárka Dohnalová, Magda Ševčíková, Kateřina Pelegrinová, Fausto Giunchiglia, Ryan Cotterell, Ekaterina Vylomova

Figure 1 for The SIGMORPHON 2022 Shared Task on Morpheme Segmentation
Figure 2 for The SIGMORPHON 2022 Shared Task on Morpheme Segmentation
Figure 3 for The SIGMORPHON 2022 Shared Task on Morpheme Segmentation
Figure 4 for The SIGMORPHON 2022 Shared Task on Morpheme Segmentation

The SIGMORPHON 2022 shared task on morpheme segmentation challenged systems to decompose a word into a sequence of morphemes and covered most types of morphology: compounds, derivations, and inflections. Subtask 1, word-level morpheme segmentation, covered 5 million words in 9 languages (Czech, English, Spanish, Hungarian, French, Italian, Russian, Latin, Mongolian) and received 13 system submissions from 7 teams and the best system averaged 97.29% F1 score across all languages, ranging English (93.84%) to Latin (99.38%). Subtask 2, sentence-level morpheme segmentation, covered 18,735 sentences in 3 languages (Czech, English, Mongolian), received 10 system submissions from 3 teams, and the best systems outperformed all three state-of-the-art subword tokenization methods (BPE, ULM, Morfessor2) by 30.71% absolute. To facilitate error analysis and support any type of future studies, we released all system predictions, the evaluation script, and all gold standard datasets.

* The 19th SIGMORPHON Workshop on Computational Research in Phonetics, Phonology, and Morphology 
Viaarxiv icon

UniMorph 4.0: Universal Morphology

May 10, 2022
Khuyagbaatar Batsuren, Omer Goldman, Salam Khalifa, Nizar Habash, Witold Kieraś, Gábor Bella, Brian Leonard, Garrett Nicolai, Kyle Gorman, Yustinus Ghanggo Ate, Maria Ryskina, Sabrina J. Mielke, Elena Budianskaya, Charbel El-Khaissi, Tiago Pimentel, Michael Gasser, William Lane, Mohit Raj, Matt Coler, Jaime Rafael Montoya Samame, Delio Siticonatzi Camaiteri, Esaú Zumaeta Rojas, Didier López Francis, Arturo Oncevay, Juan López Bautista, Gema Celeste Silva Villegas, Lucas Torroba Hennigen, Adam Ek, David Guriel, Peter Dirix, Jean-Philippe Bernardy, Andrey Scherbakov, Aziyana Bayyr-ool, Antonios Anastasopoulos, Roberto Zariquiey, Karina Sheifer, Sofya Ganieva, Hilaria Cruz, Ritván Karahóǧa, Stella Markantonatou, George Pavlidis, Matvey Plugaryov, Elena Klyachko, Ali Salehi, Candy Angulo, Jatayu Baxi, Andrew Krizhanovsky, Natalia Krizhanovskaya, Elizabeth Salesky, Clara Vania, Sardana Ivanova, Jennifer White, Rowan Hall Maudslay, Josef Valvoda, Ran Zmigrod, Paula Czarnowska, Irene Nikkarinen, Aelita Salchak, Brijesh Bhatt, Christopher Straughn, Zoey Liu, Jonathan North Washington, Yuval Pinter, Duygu Ataman, Marcin Wolinski, Totok Suhardijanto, Anna Yablonskaya, Niklas Stoehr, Hossep Dolatian, Zahroh Nuriah, Shyam Ratan, Francis M. Tyers, Edoardo M. Ponti, Grant Aiton, Aryaman Arora, Richard J. Hatcher, Ritesh Kumar, Jeremiah Young, Daria Rodionova, Anastasia Yemelina, Taras Andrushko, Igor Marchenko, Polina Mashkovtseva, Alexandra Serova, Emily Prud'hommeaux, Maria Nepomniashchaya, Fausto Giunchiglia, Eleanor Chodroff, Mans Hulden, Miikka Silfverberg, Arya D. McCarthy, David Yarowsky, Ryan Cotterell, Reut Tsarfaty, Ekaterina Vylomova

Figure 1 for UniMorph 4.0: Universal Morphology
Figure 2 for UniMorph 4.0: Universal Morphology
Figure 3 for UniMorph 4.0: Universal Morphology
Figure 4 for UniMorph 4.0: Universal Morphology

The Universal Morphology (UniMorph) project is a collaborative effort providing broad-coverage instantiated normalized morphological inflection tables for hundreds of diverse world languages. The project comprises two major thrusts: a language-independent feature schema for rich morphological annotation and a type-level resource of annotated data in diverse languages realizing that schema. This paper presents the expansions and improvements made on several fronts over the last couple of years (since McCarthy et al. (2020)). Collaborative efforts by numerous linguists have added 67 new languages, including 30 endangered languages. We have implemented several improvements to the extraction pipeline to tackle some issues, e.g. missing gender and macron information. We have also amended the schema to use a hierarchical structure that is needed for morphological phenomena like multiple-argument agreement and case stacking, while adding some missing morphological features to make the schema more inclusive. In light of the last UniMorph release, we also augmented the database with morpheme segmentation for 16 languages. Lastly, this new release makes a push towards inclusion of derivational morphology in UniMorph by enriching the data and annotation schema with instances representing derivational processes from MorphyNet.

* LREC 2022; The first two authors made equal contributions 
Viaarxiv icon

Using Linguistic Typology to Enrich Multilingual Lexicons: the Case of Lexical Gaps in Kinship

Apr 11, 2022
Temuulen Khishigsuren, Gábor Bella, Khuyagbaatar Batsuren, Abed Alhakim Freihat, Nandu Chandran Nair, Amarsanaa Ganbold, Hadi Khalilia, Yamini Chandrashekar, Fausto Giunchiglia

Figure 1 for Using Linguistic Typology to Enrich Multilingual Lexicons: the Case of Lexical Gaps in Kinship
Figure 2 for Using Linguistic Typology to Enrich Multilingual Lexicons: the Case of Lexical Gaps in Kinship
Figure 3 for Using Linguistic Typology to Enrich Multilingual Lexicons: the Case of Lexical Gaps in Kinship
Figure 4 for Using Linguistic Typology to Enrich Multilingual Lexicons: the Case of Lexical Gaps in Kinship

This paper describes a method to enrich lexical resources with content relating to linguistic diversity, based on knowledge from the field of lexical typology. We capture the phenomenon of diversity through the notions of lexical gap and language-specific word and use a systematic method to infer gaps semi-automatically on a large scale. As a first result obtained for the domain of kinship terminology, known to be very diverse throughout the world, we publish a lexico-semantic resource consisting of 198 domain concepts, 1,911 words, and 37,370 gaps covering 699 languages. We see potential in the use of resources such as ours for the improvement of a variety of cross-lingual NLP tasks, which we demonstrate through a downstream application for the evaluation of machine translation systems.

* LREC 2022 
Viaarxiv icon

Language Diversity: Visible to Humans, Exploitable by Machines

Mar 09, 2022
Gábor Bella, Erdenebileg Byambadorj, Yamini Chandrashekar, Khuyagbaatar Batsuren, Danish Ashgar Cheema, Fausto Giunchiglia

Figure 1 for Language Diversity: Visible to Humans, Exploitable by Machines
Figure 2 for Language Diversity: Visible to Humans, Exploitable by Machines
Figure 3 for Language Diversity: Visible to Humans, Exploitable by Machines
Figure 4 for Language Diversity: Visible to Humans, Exploitable by Machines

The Universal Knowledge Core (UKC) is a large multilingual lexical database with a focus on language diversity and covering over a thousand languages. The aim of the database, as well as its tools and data catalogue, is to make the somewhat abstract notion of diversity visually understandable for humans and formally exploitable by machines. The UKC website lets users explore millions of individual words and their meanings, but also phenomena of cross-lingual convergence and divergence, such as shared interlingual meanings, lexicon similarities, cognate clusters, or lexical gaps. The UKC LiveLanguage Catalogue, in turn, provides access to the underlying lexical data in a computer-processable form, ready to be reused in cross-lingual applications.

* Accepted for publication in ACL 2022 
Viaarxiv icon