Alert button
Picture for Salam Khalifa

Salam Khalifa

Alert button

Morphological Inflection: A Reality Check

May 25, 2023
Jordan Kodner, Sarah Payne, Salam Khalifa, Zoey Liu

Figure 1 for Morphological Inflection: A Reality Check
Figure 2 for Morphological Inflection: A Reality Check
Figure 3 for Morphological Inflection: A Reality Check
Figure 4 for Morphological Inflection: A Reality Check

Morphological inflection is a popular task in sub-word NLP with both practical and cognitive applications. For years now, state-of-the-art systems have reported high, but also highly variable, performance across data sets and languages. We investigate the causes of this high performance and high variability; we find several aspects of data set creation and evaluation which systematically inflate performance and obfuscate differences between languages. To improve generalizability and reliability of results, we propose new data sampling and evaluation strategies that better reflect likely use-cases. Using these new strategies, we make new observations on the generalization abilities of current inflection systems.

* To appear at ACL 2023 
Viaarxiv icon

UniMorph 4.0: Universal Morphology

May 10, 2022
Khuyagbaatar Batsuren, Omer Goldman, Salam Khalifa, Nizar Habash, Witold Kieraś, Gábor Bella, Brian Leonard, Garrett Nicolai, Kyle Gorman, Yustinus Ghanggo Ate, Maria Ryskina, Sabrina J. Mielke, Elena Budianskaya, Charbel El-Khaissi, Tiago Pimentel, Michael Gasser, William Lane, Mohit Raj, Matt Coler, Jaime Rafael Montoya Samame, Delio Siticonatzi Camaiteri, Esaú Zumaeta Rojas, Didier López Francis, Arturo Oncevay, Juan López Bautista, Gema Celeste Silva Villegas, Lucas Torroba Hennigen, Adam Ek, David Guriel, Peter Dirix, Jean-Philippe Bernardy, Andrey Scherbakov, Aziyana Bayyr-ool, Antonios Anastasopoulos, Roberto Zariquiey, Karina Sheifer, Sofya Ganieva, Hilaria Cruz, Ritván Karahóǧa, Stella Markantonatou, George Pavlidis, Matvey Plugaryov, Elena Klyachko, Ali Salehi, Candy Angulo, Jatayu Baxi, Andrew Krizhanovsky, Natalia Krizhanovskaya, Elizabeth Salesky, Clara Vania, Sardana Ivanova, Jennifer White, Rowan Hall Maudslay, Josef Valvoda, Ran Zmigrod, Paula Czarnowska, Irene Nikkarinen, Aelita Salchak, Brijesh Bhatt, Christopher Straughn, Zoey Liu, Jonathan North Washington, Yuval Pinter, Duygu Ataman, Marcin Wolinski, Totok Suhardijanto, Anna Yablonskaya, Niklas Stoehr, Hossep Dolatian, Zahroh Nuriah, Shyam Ratan, Francis M. Tyers, Edoardo M. Ponti, Grant Aiton, Aryaman Arora, Richard J. Hatcher, Ritesh Kumar, Jeremiah Young, Daria Rodionova, Anastasia Yemelina, Taras Andrushko, Igor Marchenko, Polina Mashkovtseva, Alexandra Serova, Emily Prud'hommeaux, Maria Nepomniashchaya, Fausto Giunchiglia, Eleanor Chodroff, Mans Hulden, Miikka Silfverberg, Arya D. McCarthy, David Yarowsky, Ryan Cotterell, Reut Tsarfaty, Ekaterina Vylomova

Figure 1 for UniMorph 4.0: Universal Morphology
Figure 2 for UniMorph 4.0: Universal Morphology
Figure 3 for UniMorph 4.0: Universal Morphology
Figure 4 for UniMorph 4.0: Universal Morphology

The Universal Morphology (UniMorph) project is a collaborative effort providing broad-coverage instantiated normalized morphological inflection tables for hundreds of diverse world languages. The project comprises two major thrusts: a language-independent feature schema for rich morphological annotation and a type-level resource of annotated data in diverse languages realizing that schema. This paper presents the expansions and improvements made on several fronts over the last couple of years (since McCarthy et al. (2020)). Collaborative efforts by numerous linguists have added 67 new languages, including 30 endangered languages. We have implemented several improvements to the extraction pipeline to tackle some issues, e.g. missing gender and macron information. We have also amended the schema to use a hierarchical structure that is needed for morphological phenomena like multiple-argument agreement and case stacking, while adding some missing morphological features to make the schema more inclusive. In light of the last UniMorph release, we also augmented the database with morpheme segmentation for 16 languages. Lastly, this new release makes a push towards inclusion of derivational morphology in UniMorph by enriching the data and annotation schema with instances representing derivational processes from MorphyNet.

* LREC 2022; The first two authors made equal contributions 
Viaarxiv icon

Morphosyntactic Tagging with Pre-trained Language Models for Arabic and its Dialects

Oct 13, 2021
Go Inoue, Salam Khalifa, Nizar Habash

Figure 1 for Morphosyntactic Tagging with Pre-trained Language Models for Arabic and its Dialects
Figure 2 for Morphosyntactic Tagging with Pre-trained Language Models for Arabic and its Dialects
Figure 3 for Morphosyntactic Tagging with Pre-trained Language Models for Arabic and its Dialects
Figure 4 for Morphosyntactic Tagging with Pre-trained Language Models for Arabic and its Dialects

We present state-of-the-art results on morphosyntactic tagging across different varieties of Arabic using fine-tuned pre-trained transformer language models. Our models consistently outperform existing systems in Modern Standard Arabic and all the Arabic dialects we study, achieving 2.6% absolute improvement over the previous state-of-the-art in Modern Standard Arabic, 2.8% in Gulf, 1.6% in Egyptian, and 7.0% in Levantine. We explore different training setups for fine-tuning pre-trained transformer language models, including training data size, the use of external linguistic resources, and the use of annotated data from other dialects in a low-resource scenario. Our results show that strategic fine-tuning using datasets from other high-resource dialects is beneficial for a low-resource dialect. Additionally, we show that high-quality morphological analyzers as external linguistic resources are beneficial especially in low-resource settings.

Viaarxiv icon

MADARi: A Web Interface for Joint Arabic Morphological Annotation and Spelling Correction

Aug 25, 2018
Ossama Obeid, Salam Khalifa, Nizar Habash, Houda Bouamor, Wajdi Zaghouani, Kemal Oflazer

Figure 1 for MADARi: A Web Interface for Joint Arabic Morphological Annotation and Spelling Correction
Figure 2 for MADARi: A Web Interface for Joint Arabic Morphological Annotation and Spelling Correction
Figure 3 for MADARi: A Web Interface for Joint Arabic Morphological Annotation and Spelling Correction
Figure 4 for MADARi: A Web Interface for Joint Arabic Morphological Annotation and Spelling Correction

In this paper, we introduce MADARi, a joint morphological annotation and spelling correction system for texts in Standard and Dialectal Arabic. The MADARi framework provides intuitive interfaces for annotating text and managing the annotation process of a large number of sizable documents. Morphological annotation includes indicating, for a word, in context, its baseword, clitics, part-of-speech, lemma, gloss, and dialect identification. MADARi has a suite of utilities to help with annotator productivity. For example, annotators are provided with pre-computed analyses to assist them in their task and reduce the amount of work needed to complete it. MADARi also allows annotators to query a morphological analyzer for a list of possible analyses in multiple dialects or look up previously submitted analyses. The MADARi management interface enables a lead annotator to easily manage and organize the whole annotation process remotely and concurrently. We describe the motivation, design and implementation of this interface; and we present details from a user study working with this system.

* Proceedings of the Eleventh International Conference on Language Resources and Evaluation (LREC 2018) 
Viaarxiv icon

A Large Scale Corpus of Gulf Arabic

Sep 09, 2016
Salam Khalifa, Nizar Habash, Dana Abdulrahim, Sara Hassan

Figure 1 for A Large Scale Corpus of Gulf Arabic
Figure 2 for A Large Scale Corpus of Gulf Arabic
Figure 3 for A Large Scale Corpus of Gulf Arabic
Figure 4 for A Large Scale Corpus of Gulf Arabic

Most Arabic natural language processing tools and resources are developed to serve Modern Standard Arabic (MSA), which is the official written language in the Arab World. Some Dialectal Arabic varieties, notably Egyptian Arabic, have received some attention lately and have a growing collection of resources that include annotated corpora and morphological analyzers and taggers. Gulf Arabic, however, lags behind in that respect. In this paper, we present the Gumar Corpus, a large-scale corpus of Gulf Arabic consisting of 110 million words from 1,200 forum novels. We annotate the corpus for sub-dialect information at the document level. We also present results of a preliminary study in the morphological annotation of Gulf Arabic which includes developing guidelines for a conventional orthography. The text of the corpus is publicly browsable through a web interface we developed for it.

* Language Resources and Evaluation Conference 2016 
Viaarxiv icon