Alert button
Picture for Amarsanaa Ganbold

Amarsanaa Ganbold

Alert button

The SIGMORPHON 2022 Shared Task on Morpheme Segmentation

Jun 15, 2022
Khuyagbaatar Batsuren, Gábor Bella, Aryaman Arora, Viktor Martinović, Kyle Gorman, Zdeněk Žabokrtský, Amarsanaa Ganbold, Šárka Dohnalová, Magda Ševčíková, Kateřina Pelegrinová, Fausto Giunchiglia, Ryan Cotterell, Ekaterina Vylomova

Figure 1 for The SIGMORPHON 2022 Shared Task on Morpheme Segmentation
Figure 2 for The SIGMORPHON 2022 Shared Task on Morpheme Segmentation
Figure 3 for The SIGMORPHON 2022 Shared Task on Morpheme Segmentation
Figure 4 for The SIGMORPHON 2022 Shared Task on Morpheme Segmentation

The SIGMORPHON 2022 shared task on morpheme segmentation challenged systems to decompose a word into a sequence of morphemes and covered most types of morphology: compounds, derivations, and inflections. Subtask 1, word-level morpheme segmentation, covered 5 million words in 9 languages (Czech, English, Spanish, Hungarian, French, Italian, Russian, Latin, Mongolian) and received 13 system submissions from 7 teams and the best system averaged 97.29% F1 score across all languages, ranging English (93.84%) to Latin (99.38%). Subtask 2, sentence-level morpheme segmentation, covered 18,735 sentences in 3 languages (Czech, English, Mongolian), received 10 system submissions from 3 teams, and the best systems outperformed all three state-of-the-art subword tokenization methods (BPE, ULM, Morfessor2) by 30.71% absolute. To facilitate error analysis and support any type of future studies, we released all system predictions, the evaluation script, and all gold standard datasets.

* The 19th SIGMORPHON Workshop on Computational Research in Phonetics, Phonology, and Morphology 
Viaarxiv icon

Using Linguistic Typology to Enrich Multilingual Lexicons: the Case of Lexical Gaps in Kinship

Apr 11, 2022
Temuulen Khishigsuren, Gábor Bella, Khuyagbaatar Batsuren, Abed Alhakim Freihat, Nandu Chandran Nair, Amarsanaa Ganbold, Hadi Khalilia, Yamini Chandrashekar, Fausto Giunchiglia

Figure 1 for Using Linguistic Typology to Enrich Multilingual Lexicons: the Case of Lexical Gaps in Kinship
Figure 2 for Using Linguistic Typology to Enrich Multilingual Lexicons: the Case of Lexical Gaps in Kinship
Figure 3 for Using Linguistic Typology to Enrich Multilingual Lexicons: the Case of Lexical Gaps in Kinship
Figure 4 for Using Linguistic Typology to Enrich Multilingual Lexicons: the Case of Lexical Gaps in Kinship

This paper describes a method to enrich lexical resources with content relating to linguistic diversity, based on knowledge from the field of lexical typology. We capture the phenomenon of diversity through the notions of lexical gap and language-specific word and use a systematic method to infer gaps semi-automatically on a large scale. As a first result obtained for the domain of kinship terminology, known to be very diverse throughout the world, we publish a lexico-semantic resource consisting of 198 domain concepts, 1,911 words, and 37,370 gaps covering 699 languages. We see potential in the use of resources such as ours for the improvement of a variety of cross-lingual NLP tasks, which we demonstrate through a downstream application for the evaluation of machine translation systems.

* LREC 2022 
Viaarxiv icon