Alert button
Picture for Fred Prior

Fred Prior

Alert button

Report of the Medical Image De-Identification (MIDI) Task Group -- Best Practices and Recommendations

Apr 01, 2023
David A. Clunie, Adam Flanders, Adam Taylor, Brad Erickson, Brian Bialecki, David Brundage, David Gutman, Fred Prior, J Anthony Seibert, John Perry, Judy Wawira Gichoya, Justin Kirby, Katherine Andriole, Luke Geneslaw, Steve Moore, TJ Fitzgerald, Wyatt Tellis, Ying Xiao, Keyvan Farahani

This report addresses the technical aspects of de-identification of medical images of human subjects and biospecimens, such that re-identification risk of ethical, moral, and legal concern is sufficiently reduced to allow unrestricted public sharing for any purpose, regardless of the jurisdiction of the source and distribution sites. All medical images, regardless of the mode of acquisition, are considered, though the primary emphasis is on those with accompanying data elements, especially those encoded in formats in which the data elements are embedded, particularly Digital Imaging and Communications in Medicine (DICOM). These images include image-like objects such as Segmentations, Parametric Maps, and Radiotherapy (RT) Dose objects. The scope also includes related non-image objects, such as RT Structure Sets, Plans and Dose Volume Histograms, Structured Reports, and Presentation States. Only de-identification of publicly released data is considered, and alternative approaches to privacy preservation, such as federated learning for artificial intelligence (AI) model development, are out of scope, as are issues of privacy leakage from AI model sharing. Only technical issues of public sharing are addressed.

* 131 pages 
Viaarxiv icon

medigan: A Python Library of Pretrained Generative Models for Enriched Data Access in Medical Imaging

Sep 28, 2022
Richard Osuala, Grzegorz Skorupko, Noussair Lazrak, Lidia Garrucho, Eloy García, Smriti Joshi, Socayna Jouide, Michael Rutherford, Fred Prior, Kaisar Kushibar, Oliver Diaz, Karim Lekadir

Figure 1 for medigan: A Python Library of Pretrained Generative Models for Enriched Data Access in Medical Imaging
Figure 2 for medigan: A Python Library of Pretrained Generative Models for Enriched Data Access in Medical Imaging
Figure 3 for medigan: A Python Library of Pretrained Generative Models for Enriched Data Access in Medical Imaging
Figure 4 for medigan: A Python Library of Pretrained Generative Models for Enriched Data Access in Medical Imaging

Synthetic data generated by generative models can enhance the performance and capabilities of data-hungry deep learning models in medical imaging. However, there is (1) limited availability of (synthetic) datasets and (2) generative models are complex to train, which hinders their adoption in research and clinical applications. To reduce this entry barrier, we propose medigan, a one-stop shop for pretrained generative models implemented as an open-source framework-agnostic Python library. medigan allows researchers and developers to create, increase, and domain-adapt their training data in just a few lines of code. Guided by design decisions based on gathered end-user requirements, we implement medigan based on modular components for generative model (i) execution, (ii) visualisation, (iii) search & ranking, and (iv) contribution. The library's scalability and design is demonstrated by its growing number of integrated and readily-usable pretrained generative models consisting of 21 models utilising 9 different Generative Adversarial Network architectures trained on 11 datasets from 4 domains, namely, mammography, endoscopy, x-ray, and MRI. Furthermore, 3 applications of medigan are analysed in this work, which include (a) enabling community-wide sharing of restricted data, (b) investigating generative model evaluation metrics, and (c) improving clinical downstream tasks. In (b), extending on common medical image synthesis assessment and reporting standards, we show Fr\'echet Inception Distance variability based on image normalisation and radiology-specific feature extraction.

* 32 pages, 7 figures 
Viaarxiv icon

Lung cancer screening with low-dose CT scans using a deep learning approach

Jun 01, 2019
Jason L. Causey, Yuanfang Guan, Wei Dong, Karl Walker, Jake A. Qualls, Fred Prior, Xiuzhen Huang

Figure 1 for Lung cancer screening with low-dose CT scans using a deep learning approach
Figure 2 for Lung cancer screening with low-dose CT scans using a deep learning approach
Figure 3 for Lung cancer screening with low-dose CT scans using a deep learning approach
Figure 4 for Lung cancer screening with low-dose CT scans using a deep learning approach

Lung cancer is the leading cause of cancer deaths. Early detection through low-dose computed tomography (CT) screening has been shown to significantly reduce mortality but suffers from a high false positive rate that leads to unnecessary diagnostic procedures. Quantitative image analysis coupled to deep learning techniques has the potential to reduce this false positive rate. We conducted a computational analysis of 1449 low-dose CT studies drawn from the National Lung Screening Trial (NLST) cohort. We applied to this cohort our newly developed algorithm, DeepScreener, which is based on a novel deep learning approach. The algorithm, after the training process using about 3000 CT studies, does not require lung nodule annotations to conduct cancer prediction. The algorithm uses consecutive slices and multi-task features to determine whether a nodule is likely to be cancer, and a spatial pyramid to detect nodules at different scales. We find that the algorithm can predict a patient's cancer status from a volumetric lung CT image with high accuracy (78.2%, with area under the Receiver Operating Characteristic curve (AUC) of 0.858). Our preliminary framework ranked 16th of 1972 teams (top 1%) in the Data Science Bowl 2017 (DSB2017) competition, based on the challenge datasets. We report here the application of DeepScreener on an independent NLST test set. This study indicates that the deep learning approach has the potential to significantly reduce the false positive rate in lung cancer screening with low-dose CT scans.

* 6 figures 
Viaarxiv icon

Highly accurate model for prediction of lung nodule malignancy with CT scans

Feb 06, 2018
Jason Causey, Junyu Zhang, Shiqian Ma, Bo Jiang, Jake Qualls, David G. Politte, Fred Prior, Shuzhong Zhang, Xiuzhen Huang

Figure 1 for Highly accurate model for prediction of lung nodule malignancy with CT scans
Figure 2 for Highly accurate model for prediction of lung nodule malignancy with CT scans
Figure 3 for Highly accurate model for prediction of lung nodule malignancy with CT scans
Figure 4 for Highly accurate model for prediction of lung nodule malignancy with CT scans

Computed tomography (CT) examinations are commonly used to predict lung nodule malignancy in patients, which are shown to improve noninvasive early diagnosis of lung cancer. It remains challenging for computational approaches to achieve performance comparable to experienced radiologists. Here we present NoduleX, a systematic approach to predict lung nodule malignancy from CT data, based on deep learning convolutional neural networks (CNN). For training and validation, we analyze >1000 lung nodules in images from the LIDC/IDRI cohort. All nodules were identified and classified by four experienced thoracic radiologists who participated in the LIDC project. NoduleX achieves high accuracy for nodule malignancy classification, with an AUC of ~0.99. This is commensurate with the analysis of the dataset by experienced radiologists. Our approach, NoduleX, provides an effective framework for highly accurate nodule malignancy prediction with the model trained on a large patient population. Our results are replicable with software available at http://bioinformatics.astate.edu/NoduleX.

Viaarxiv icon