Abstract:Low-rank adaptation (LoRA) has become a standard approach for fine-tuning large foundation models. However, our theoretical understanding of LoRA remains limited as prior analyses of LoRA's training dynamics either rely on linearization arguments or consider highly simplified setups. In this work, we analyze the LoRA loss landscape without such restrictive assumptions. We define two regimes: a ``special regime'', which includes idealized setups where linearization arguments hold, and a ``generic regime'' representing more realistic setups where linearization arguments do not hold. In the generic regime, we show that LoRA training converges to a global minimizer with low rank and small magnitude, or a qualitatively distinct solution with high rank and large magnitude. Finally, we argue that the zero-initialization and weight decay in LoRA training induce an implicit bias toward the low-rank, small-magnitude region of the parameter space -- where global minima lie -- thus shedding light on why LoRA training usually succeeds in finding global minima.
Abstract:In deep learning, the recently introduced state space models utilize HiPPO (High-order Polynomial Projection Operators) memory units to approximate continuous-time trajectories of input functions using ordinary differential equations (ODEs), and these techniques have shown empirical success in capturing long-range dependencies in long input sequences. However, the mathematical foundations of these ODEs, particularly the singular HiPPO-LegS (Legendre Scaled) ODE, and their corresponding numerical discretizations remain unexplored. In this work, we fill this gap by establishing that HiPPO-LegS ODE is well-posed despite its singularity, albeit without the freedom of arbitrary initial conditions, and by establishing convergence of the associated numerical discretization schemes for Riemann-integrable input functions.
Abstract:We present a novel methodology for convex optimization algorithm design using ideas from electric RLC circuits. Given an optimization problem, the first stage of the methodology is to design an appropriate electric circuit whose continuous-time dynamics converge to the solution of the optimization problem at hand. Then, the second stage is an automated, computer-assisted discretization of the continuous-time dynamics, yielding a provably convergent discrete-time algorithm. Our methodology recovers many classical (distributed) optimization algorithms and enables users to quickly design and explore a wide range of new algorithms with convergence guarantees.
Abstract:In-context learning (ICL) describes a language model's ability to generate outputs based on a set of input demonstrations and a subsequent query. To understand this remarkable capability, researchers have studied simplified, stylized models. These studies have consistently observed long loss plateaus, during which models exhibit minimal improvement, followed by a sudden, rapid surge of learning. In this work, we reveal that training on multiple diverse ICL tasks simultaneously shortens the loss plateaus, making each task easier to learn. This finding is surprising as it contradicts the natural intuition that the combined complexity of multiple ICL tasks would lengthen the learning process, not shorten it. Our result suggests that the recent success in large-scale training of language models may be attributed not only to the richness of the data at scale but also to the easier optimization (training) induced by the diversity of natural language training data.
Abstract:Large language models (LLMs) offer personalized responses based on user interactions, but this use case raises serious privacy concerns. Homomorphic encryption (HE) is a cryptographic protocol supporting arithmetic computations in encrypted states and provides a potential solution for privacy-preserving machine learning (PPML). However, the computational intensity of transformers poses challenges for applying HE to LLMs. In this work, we propose a modified HE-friendly transformer architecture with an emphasis on inference following personalized (private) fine-tuning. Utilizing LoRA fine-tuning and Gaussian kernels, we achieve significant computational speedups -- 6.94x for fine-tuning and 2.3x for inference -- while maintaining performance comparable to plaintext models. Our findings provide a viable proof of concept for offering privacy-preserving LLM services in areas where data protection is crucial.
Abstract:In latent diffusion models (LDMs), denoising diffusion process efficiently takes place on latent space whose dimension is lower than that of pixel space. Decoder is typically used to transform the representation in latent space to that in pixel space. While a decoder is assumed to have an encoder as an accurate inverse, exact encoder-decoder pair rarely exists in practice even though applications often require precise inversion of decoder. Prior works for decoder inversion in LDMs employed gradient descent inspired by inversions of generative adversarial networks. However, gradient-based methods require larger GPU memory and longer computation time for larger latent space. For example, recent video LDMs can generate more than 16 frames, but GPUs with 24 GB memory can only perform gradient-based decoder inversion for 4 frames. Here, we propose an efficient gradient-free decoder inversion for LDMs, which can be applied to diverse latent models. Theoretical convergence property of our proposed inversion has been investigated not only for the forward step method, but also for the inertial Krasnoselskii-Mann (KM) iterations under mild assumption on cocoercivity that is satisfied by recent LDMs. Our proposed gradient-free method with Adam optimizer and learning rate scheduling significantly reduced computation time and memory usage over prior gradient-based methods and enabled efficient computation in applications such as noise-space watermarking while achieving comparable error levels.
Abstract:The Value Iteration (VI) algorithm is an iterative procedure to compute the value function of a Markov decision process, and is the basis of many reinforcement learning (RL) algorithms as well. As the error convergence rate of VI as a function of iteration $k$ is $O(\gamma^k)$, it is slow when the discount factor $\gamma$ is close to $1$. To accelerate the computation of the value function, we propose Deflated Dynamics Value Iteration (DDVI). DDVI uses matrix splitting and matrix deflation techniques to effectively remove (deflate) the top $s$ dominant eigen-structure of the transition matrix $\mathcal{P}^{\pi}$. We prove that this leads to a $\tilde{O}(\gamma^k |\lambda_{s+1}|^k)$ convergence rate, where $\lambda_{s+1}$is $(s+1)$-th largest eigenvalue of the dynamics matrix. We then extend DDVI to the RL setting and present Deflated Dynamics Temporal Difference (DDTD) algorithm. We empirically show the effectiveness of the proposed algorithms.
Abstract:Current state-of-the-art diffusion models employ U-Net architectures containing convolutional and (qkv) self-attention layers. The U-Net processes images while being conditioned on the time embedding input for each sampling step and the class or caption embedding input corresponding to the desired conditional generation. Such conditioning involves scale-and-shift operations to the convolutional layers but does not directly affect the attention layers. While these standard architectural choices are certainly effective, not conditioning the attention layers feels arbitrary and potentially suboptimal. In this work, we show that simply adding LoRA conditioning to the attention layers without changing or tuning the other parts of the U-Net architecture improves the image generation quality. For example, a drop-in addition of LoRA conditioning to EDM diffusion model yields FID scores of 1.91/1.75 for unconditional and class-conditional CIFAR-10 generation, improving upon the baseline of 1.97/1.79.
Abstract:Low-rank adaptation (LoRA) has become the standard approach for parameter-efficient fine-tuning of large language models (LLM), but our theoretical understanding of LoRA has been limited. In this work, we theoretically analyze LoRA fine-tuning in the neural tangent kernel (NTK) regime with $N$ data points, showing: (i) full fine-tuning (without LoRA) admits a low-rank solution of rank $r\lesssim \sqrt{N}$; (ii) using LoRA with rank $r\gtrsim \sqrt{N}$ eliminates spurious local minima, allowing gradient descent to find the low-rank solutions; (iii) the low-rank solution found using LoRA generalizes well.
Abstract:Classical clustering methods do not provide users with direct control of the clustering results, and the clustering results may not be consistent with the relevant criterion that a user has in mind. In this work, we present a new methodology for performing image clustering based on user-specified text criteria by leveraging modern vision-language models and large language models. We call our method Image Clustering Conditioned on Text Criteria (IC$|$TC), and it represents a different paradigm of image clustering. IC$|$TC requires a minimal and practical degree of human intervention and grants the user significant control over the clustering results in return. Our experiments show that IC$|$TC can effectively cluster images with various criteria, such as human action, physical location, or the person's mood, while significantly outperforming baselines.