Abstract:In deep learning, the recently introduced state space models utilize HiPPO (High-order Polynomial Projection Operators) memory units to approximate continuous-time trajectories of input functions using ordinary differential equations (ODEs), and these techniques have shown empirical success in capturing long-range dependencies in long input sequences. However, the mathematical foundations of these ODEs, particularly the singular HiPPO-LegS (Legendre Scaled) ODE, and their corresponding numerical discretizations remain unexplored. In this work, we fill this gap by establishing that HiPPO-LegS ODE is well-posed despite its singularity, albeit without the freedom of arbitrary initial conditions, and by establishing convergence of the associated numerical discretization schemes for Riemann-integrable input functions.
Abstract:We present a novel methodology for convex optimization algorithm design using ideas from electric RLC circuits. Given an optimization problem, the first stage of the methodology is to design an appropriate electric circuit whose continuous-time dynamics converge to the solution of the optimization problem at hand. Then, the second stage is an automated, computer-assisted discretization of the continuous-time dynamics, yielding a provably convergent discrete-time algorithm. Our methodology recovers many classical (distributed) optimization algorithms and enables users to quickly design and explore a wide range of new algorithms with convergence guarantees.