Abstract:Recent Vision-Language Models (VLMs) have demonstrated impressive multimodal comprehension and reasoning capabilities, yet they often struggle with trivially simple visual tasks. In this work, we focus on the domain of basic 2D Euclidean geometry and systematically categorize the fundamental, indivisible visual perception skills, which we refer to as atomic visual skills. We then introduce the Atomic Visual Skills Dataset (AVSD) for evaluating VLMs on the atomic visual skills. Using AVSD, we benchmark state-of-the-art VLMs and find that they struggle with these tasks, despite being trivial for adult humans. Our findings highlight the need for purpose-built datasets to train and evaluate VLMs on atomic, rather than composite, visual perception tasks.
Abstract:Large language models (LLMs) offer personalized responses based on user interactions, but this use case raises serious privacy concerns. Homomorphic encryption (HE) is a cryptographic protocol supporting arithmetic computations in encrypted states and provides a potential solution for privacy-preserving machine learning (PPML). However, the computational intensity of transformers poses challenges for applying HE to LLMs. In this work, we propose a modified HE-friendly transformer architecture with an emphasis on inference following personalized (private) fine-tuning. Utilizing LoRA fine-tuning and Gaussian kernels, we achieve significant computational speedups -- 6.94x for fine-tuning and 2.3x for inference -- while maintaining performance comparable to plaintext models. Our findings provide a viable proof of concept for offering privacy-preserving LLM services in areas where data protection is crucial.