Abstract:Quadcopters are versatile aerial robots gaining popularity in numerous critical applications. However, their operational effectiveness is constrained by limited battery life and restricted flight range. To address these challenges, autonomous drone landing on stationary or mobile charging and battery-swapping stations has become an essential capability. In this study, we present NMPC-Lander, a novel control architecture that integrates Nonlinear Model Predictive Control (NMPC) with Control Barrier Functions (CBF) to achieve precise and safe autonomous landing on both static and dynamic platforms. Our approach employs NMPC for accurate trajectory tracking and landing, while simultaneously incorporating CBF to ensure collision avoidance with static obstacles. Experimental evaluations on the real hardware demonstrate high precision in landing scenarios, with an average final position error of 9.0 cm and 11 cm for stationary and mobile platforms, respectively. Notably, NMPC-Lander outperforms the B-spline combined with the A* planning method by nearly threefold in terms of position tracking, underscoring its superior robustness and practical effectiveness.
Abstract:In the area of multi-drone systems, navigating through dynamic environments from start to goal while providing collision-free trajectory and efficient path planning is a significant challenge. To solve this problem, we propose a novel SwarmPath technology that involves the integration of Artificial Potential Field (APF) with Impedance Controller. The proposed approach provides a solution based on collision free leader-follower behaviour where drones are able to adapt themselves to the environment. Moreover, the leader is virtual while drones are physical followers leveraging APF path planning approach to find the smallest possible path to the target. Simultaneously, the drones dynamically adjust impedance links, allowing themselves to create virtual links with obstacles to avoid them. As compared to conventional APF, the proposed SwarmPath system not only provides smooth collision-avoidance but also enable agents to efficiently pass through narrow passages by reducing the total travel time by 30% while ensuring safety in terms of drones connectivity. Lastly, the results also illustrate that the discrepancies between simulated and real environment, exhibit an average absolute percentage error (APE) of 6% of drone trajectories. This underscores the reliability of our solution in real-world scenarios.