Picture for Dongrui Wu

Dongrui Wu

Patch Learning

Add code
Jun 01, 2019
Figure 1 for Patch Learning
Figure 2 for Patch Learning
Figure 3 for Patch Learning
Figure 4 for Patch Learning
Viaarxiv icon

On the Vulnerability of CNN Classifiers in EEG-Based BCIs

Add code
Mar 31, 2019
Figure 1 for On the Vulnerability of CNN Classifiers in EEG-Based BCIs
Figure 2 for On the Vulnerability of CNN Classifiers in EEG-Based BCIs
Figure 3 for On the Vulnerability of CNN Classifiers in EEG-Based BCIs
Figure 4 for On the Vulnerability of CNN Classifiers in EEG-Based BCIs
Viaarxiv icon

Optimize TSK Fuzzy Systems for Big Data Regression Problems: Mini-Batch Gradient Descent with Regularization, DropRule and AdaBound

Add code
Mar 26, 2019
Figure 1 for Optimize TSK Fuzzy Systems for Big Data Regression Problems: Mini-Batch Gradient Descent with Regularization, DropRule and AdaBound
Figure 2 for Optimize TSK Fuzzy Systems for Big Data Regression Problems: Mini-Batch Gradient Descent with Regularization, DropRule and AdaBound
Figure 3 for Optimize TSK Fuzzy Systems for Big Data Regression Problems: Mini-Batch Gradient Descent with Regularization, DropRule and AdaBound
Figure 4 for Optimize TSK Fuzzy Systems for Big Data Regression Problems: Mini-Batch Gradient Descent with Regularization, DropRule and AdaBound
Viaarxiv icon

Active Stacking for Heart Rate Estimation

Add code
Mar 26, 2019
Figure 1 for Active Stacking for Heart Rate Estimation
Figure 2 for Active Stacking for Heart Rate Estimation
Figure 3 for Active Stacking for Heart Rate Estimation
Figure 4 for Active Stacking for Heart Rate Estimation
Viaarxiv icon

On the Functional Equivalence of TSK Fuzzy Systems to Neural Networks, Mixture of Experts, CART, and Stacking Ensemble Regression

Add code
Mar 25, 2019
Figure 1 for On the Functional Equivalence of TSK Fuzzy Systems to Neural Networks, Mixture of Experts, CART, and Stacking Ensemble Regression
Figure 2 for On the Functional Equivalence of TSK Fuzzy Systems to Neural Networks, Mixture of Experts, CART, and Stacking Ensemble Regression
Figure 3 for On the Functional Equivalence of TSK Fuzzy Systems to Neural Networks, Mixture of Experts, CART, and Stacking Ensemble Regression
Figure 4 for On the Functional Equivalence of TSK Fuzzy Systems to Neural Networks, Mixture of Experts, CART, and Stacking Ensemble Regression
Viaarxiv icon

Wasserstein Distance based Deep Adversarial Transfer Learning for Intelligent Fault Diagnosis

Add code
Mar 02, 2019
Figure 1 for Wasserstein Distance based Deep Adversarial Transfer Learning for Intelligent Fault Diagnosis
Figure 2 for Wasserstein Distance based Deep Adversarial Transfer Learning for Intelligent Fault Diagnosis
Figure 3 for Wasserstein Distance based Deep Adversarial Transfer Learning for Intelligent Fault Diagnosis
Figure 4 for Wasserstein Distance based Deep Adversarial Transfer Learning for Intelligent Fault Diagnosis
Viaarxiv icon

Multi-Tasking Evolutionary Algorithm (MTEA) for Single-Objective Continuous Optimization

Add code
Dec 15, 2018
Figure 1 for Multi-Tasking Evolutionary Algorithm (MTEA) for Single-Objective Continuous Optimization
Figure 2 for Multi-Tasking Evolutionary Algorithm (MTEA) for Single-Objective Continuous Optimization
Figure 3 for Multi-Tasking Evolutionary Algorithm (MTEA) for Single-Objective Continuous Optimization
Figure 4 for Multi-Tasking Evolutionary Algorithm (MTEA) for Single-Objective Continuous Optimization
Viaarxiv icon

Transfer Learning for Brain-Computer Interfaces: An Euclidean Space Data Alignment Approach

Add code
Aug 08, 2018
Figure 1 for Transfer Learning for Brain-Computer Interfaces: An Euclidean Space Data Alignment Approach
Figure 2 for Transfer Learning for Brain-Computer Interfaces: An Euclidean Space Data Alignment Approach
Figure 3 for Transfer Learning for Brain-Computer Interfaces: An Euclidean Space Data Alignment Approach
Figure 4 for Transfer Learning for Brain-Computer Interfaces: An Euclidean Space Data Alignment Approach
Viaarxiv icon

EEG-Based Driver Drowsiness Estimation Using Convolutional Neural Networks

Add code
Aug 08, 2018
Figure 1 for EEG-Based Driver Drowsiness Estimation Using Convolutional Neural Networks
Figure 2 for EEG-Based Driver Drowsiness Estimation Using Convolutional Neural Networks
Figure 3 for EEG-Based Driver Drowsiness Estimation Using Convolutional Neural Networks
Viaarxiv icon

Transfer Learning Enhanced Common Spatial Pattern Filtering for Brain Computer Interfaces (BCIs): Overview and a New Approach

Add code
Aug 08, 2018
Figure 1 for Transfer Learning Enhanced Common Spatial Pattern Filtering for Brain Computer Interfaces (BCIs): Overview and a New Approach
Viaarxiv icon