Richard
Abstract:``Learning to hash'' is a practical solution for efficient retrieval, offering fast search speed and low storage cost. It is widely applied in various applications, such as image-text cross-modal search. In this paper, we explore the potential of enhancing the performance of learning to hash with the proliferation of powerful large pre-trained models, such as Vision-Language Pre-training (VLP) models. We introduce a novel method named Distillation for Cross-Modal Quantization (DCMQ), which leverages the rich semantic knowledge of VLP models to improve hash representation learning. Specifically, we use the VLP as a `teacher' to distill knowledge into a `student' hashing model equipped with codebooks. This process involves the replacement of supervised labels, which are composed of multi-hot vectors and lack semantics, with the rich semantics of VLP. In the end, we apply a transformation termed Normalization with Paired Consistency (NPC) to achieve a discriminative target for distillation. Further, we introduce a new quantization method, Product Quantization with Gumbel (PQG) that promotes balanced codebook learning, thereby improving the retrieval performance. Extensive benchmark testing demonstrates that DCMQ consistently outperforms existing supervised cross-modal hashing approaches, showcasing its significant potential.
Abstract:Replicating the remarkable athleticism seen in animals has long been a challenge in robotics control. Although Reinforcement Learning (RL) has demonstrated significant progress in dynamic legged locomotion control, the substantial sim-to-real gap often hinders the real-world demonstration of truly dynamic movements. We propose a new framework to mitigate this gap through frequency-domain analysis-based impedance matching between simulated and real robots. Our framework offers a structured guideline for parameter selection and the range for dynamics randomization in simulation, thus facilitating a safe sim-to-real transfer. The learned policy using our framework enabled jumps across distances of 55 cm and heights of 38 cm. The results are, to the best of our knowledge, one of the highest and longest running jumps demonstrated by an RL-based control policy in a real quadruped robot. Note that the achieved jumping height is approximately 85% of that obtained from a state-of-the-art trajectory optimization method, which can be seen as the physical limit for the given robot hardware. In addition, our control policy accomplished stable walking at speeds up to 2 m/s in the forward and backward directions, and 1 m/s in the sideway direction.
Abstract:Composed Image Retrieval (CIR) is a task that retrieves images similar to a query, based on a provided textual modification. Current techniques rely on supervised learning for CIR models using labeled triplets of the reference image, text, target image. These specific triplets are not as commonly available as simple image-text pairs, limiting the widespread use of CIR and its scalability. On the other hand, zero-shot CIR can be relatively easily trained with image-caption pairs without considering the image-to-image relation, but this approach tends to yield lower accuracy. We propose a new semi-supervised CIR approach where we search for a reference and its related target images in auxiliary data and learn our large language model-based Visual Delta Generator (VDG) to generate text describing the visual difference (i.e., visual delta) between the two. VDG, equipped with fluent language knowledge and being model agnostic, can generate pseudo triplets to boost the performance of CIR models. Our approach significantly improves the existing supervised learning approaches and achieves state-of-the-art results on the CIR benchmarks.
Abstract:We introduce the CAUS (Curious About Uncertain Scene) dataset, designed to enable Large Language Models, specifically GPT-4, to emulate human cognitive processes for resolving uncertainties. Leveraging this dataset, we investigate the potential of LLMs to engage in questioning effectively. Our approach involves providing scene descriptions embedded with uncertainties to stimulate the generation of reasoning and queries. The queries are then classified according to multi-dimensional criteria. All procedures are facilitated by a collaborative system involving both LLMs and human researchers. Our results demonstrate that GPT-4 can effectively generate pertinent questions and grasp their nuances, particularly when given appropriate context and instructions. The study suggests that incorporating human-like questioning into AI models improves their ability to manage uncertainties, paving the way for future advancements in Artificial Intelligence (AI).
Abstract:Collaborative filtering recommender systems (CF-RecSys) have shown successive results in enhancing the user experience on social media and e-commerce platforms. However, as CF-RecSys struggles under cold scenarios with sparse user-item interactions, recent strategies have focused on leveraging modality information of user/items (e.g., text or images) based on pre-trained modality encoders and Large Language Models (LLMs). Despite their effectiveness under cold scenarios, we observe that they underperform simple traditional collaborative filtering models under warm scenarios due to the lack of collaborative knowledge. In this work, we propose an efficient All-round LLM-based Recommender system, called A-LLMRec, that excels not only in the cold scenario but also in the warm scenario. Our main idea is to enable an LLM to directly leverage the collaborative knowledge contained in a pre-trained state-of-the-art CF-RecSys so that the emergent ability of the LLM as well as the high-quality user/item embeddings that are already trained by the state-of-the-art CF-RecSys can be jointly exploited. This approach yields two advantages: (1) model-agnostic, allowing for integration with various existing CF-RecSys, and (2) efficiency, eliminating the extensive fine-tuning typically required for LLM-based recommenders. Our extensive experiments on various real-world datasets demonstrate the superiority of A-LLMRec in various scenarios, including cold/warm, few-shot, cold user, and cross-domain scenarios. Beyond the recommendation task, we also show the potential of A-LLMRec in generating natural language outputs based on the understanding of the collaborative knowledge by performing a favorite genre prediction task. Our code is available at https://github.com/ghdtjr/A-LLMRec .
Abstract:We introduce HyperCLOVA X, a family of large language models (LLMs) tailored to the Korean language and culture, along with competitive capabilities in English, math, and coding. HyperCLOVA X was trained on a balanced mix of Korean, English, and code data, followed by instruction-tuning with high-quality human-annotated datasets while abiding by strict safety guidelines reflecting our commitment to responsible AI. The model is evaluated across various benchmarks, including comprehensive reasoning, knowledge, commonsense, factuality, coding, math, chatting, instruction-following, and harmlessness, in both Korean and English. HyperCLOVA X exhibits strong reasoning capabilities in Korean backed by a deep understanding of the language and cultural nuances. Further analysis of the inherent bilingual nature and its extension to multilingualism highlights the model's cross-lingual proficiency and strong generalization ability to untargeted languages, including machine translation between several language pairs and cross-lingual inference tasks. We believe that HyperCLOVA X can provide helpful guidance for regions or countries in developing their sovereign LLMs.
Abstract:We introduce StaccaToe, a human-scale, electric motor-powered single-leg robot designed to rival the agility of human locomotion through two distinctive attributes: an actuated toe and a co-actuation configuration inspired by the human leg. Leveraging the foundational design of HyperLeg's lower leg mechanism, we develop a stand-alone robot by incorporating new link designs, custom-designed power electronics, and a refined control system. Unlike previous jumping robots that rely on either special mechanisms (e.g., springs and clutches) or hydraulic/pneumatic actuators, StaccaToe employs electric motors without energy storage mechanisms. This choice underscores our ultimate goal of developing a practical, high-performance humanoid robot capable of human-like, stable walking as well as explosive dynamic movements. In this paper, we aim to empirically evaluate the balance capability and the exertion of explosive ground reaction forces of our toe and co-actuation mechanisms. Throughout extensive hardware and controller development, StaccaToe showcases its control fidelity by demonstrating a balanced tip-toe stance and dynamic jump. This study is significant for three key reasons: 1) StaccaToe represents the first human-scale, electric motor-driven single-leg robot to execute dynamic maneuvers without relying on specialized mechanisms; 2) our research provides empirical evidence of the benefits of replicating critical human leg attributes in robotic design; and 3) we explain the design process for creating agile legged robots, the details that have been scantily covered in academic literature.
Abstract:When legged robots perform agile movements, traditional RGB cameras often produce blurred images, posing a challenge for accurate state estimation. Event cameras, inspired by biological vision mechanisms, have emerged as a promising solution for capturing high-speed movements and coping with challenging lighting conditions, owing to their significant advantages, such as low latency, high temporal resolution, and a high dynamic range. However, the integration of event cameras into agile-legged robots is still largely unexplored. Notably, no event camera-based dataset has yet been specifically developed for dynamic legged robots. To bridge this gap, we introduce EAGLE (Event dataset of an AGile LEgged robot), a new dataset comprising data from an event camera, an RGB-D camera, an IMU, a LiDAR, and joint angle encoders, all mounted on a quadruped robotic platform. This dataset features more than 100 sequences from real-world environments, encompassing various indoor and outdoor environments, different lighting conditions, a range of robot gaits (e.g., trotting, bounding, pronking), as well as acrobatic movements such as backflipping. To our knowledge, this is the first event camera dataset to include multi-sensory data collected by an agile quadruped robot.
Abstract:This paper presents a fresh perspective on the role of saliency maps in weakly-supervised semantic segmentation (WSSS) and offers new insights and research directions based on our empirical findings. We conduct comprehensive experiments and observe that the quality of the saliency map is a critical factor in saliency-guided WSSS approaches. Nonetheless, we find that the saliency maps used in previous works are often arbitrarily chosen, despite their significant impact on WSSS. Additionally, we observe that the choice of the threshold, which has received less attention before, is non-trivial in WSSS. To facilitate more meaningful and rigorous research for saliency-guided WSSS, we introduce \texttt{WSSS-BED}, a standardized framework for conducting research under unified conditions. \texttt{WSSS-BED} provides various saliency maps and activation maps for seven WSSS methods, as well as saliency maps from unsupervised salient object detection models.
Abstract:Significant methodological strides have been made toward Chest X-ray (CXR) understanding via modern vision-language models (VLMs), demonstrating impressive Visual Question Answering (VQA) and CXR report generation abilities. However, existing CXR understanding frameworks still possess several procedural caveats. (1) Previous methods solely use CXR reports, which are insufficient for comprehensive Visual Question Answering (VQA), especially when additional health-related data like medication history and prior diagnoses are needed. (2) Previous methods use raw CXR reports, which are often arbitrarily structured. While modern language models can understand various text formats, restructuring reports for clearer, organized anatomy-based information could enhance their usefulness. (3) Current evaluation methods for CXR-VQA primarily emphasize linguistic correctness, lacking the capability to offer nuanced assessments of the generated answers. In this work, to address the aforementioned caveats, we introduce WoLF, a Wide-scope Large Language Model Framework for CXR understanding. To resolve (1), we capture multi-faceted records of patients, which are utilized for accurate diagnoses in real-world clinical scenarios. Specifically, we adopt the Electronic Health Records (EHR) to generate instruction-following data suited for CXR understanding. Regarding (2), we enhance report generation performance by decoupling knowledge in CXR reports based on anatomical structure even within the attention step via masked attention. To address (3), we introduce an AI-evaluation protocol optimized for assessing the capabilities of LLM. Through extensive experimental validations, WoLF demonstrates superior performance over other models on MIMIC-CXR in the AI-evaluation arena about VQA (up to +9.47%p mean score) and by metrics about report generation (+7.3%p BLEU-1).