Alert button
Picture for Domenec Puig

Domenec Puig

Alert button

A Robust Ensemble Algorithm for Ischemic Stroke Lesion Segmentation: Generalizability and Clinical Utility Beyond the ISLES Challenge

Add code
Bookmark button
Alert button
Apr 03, 2024
Ezequiel de la Rosa, Mauricio Reyes, Sook-Lei Liew, Alexandre Hutton, Roland Wiest, Johannes Kaesmacher, Uta Hanning, Arsany Hakim, Richard Zubal, Waldo Valenzuela, David Robben, Diana M. Sima, Vincenzo Anania, Arne Brys, James A. Meakin, Anne Mickan, Gabriel Broocks, Christian Heitkamp, Shengbo Gao, Kongming Liang, Ziji Zhang, Md Mahfuzur Rahman Siddiquee, Andriy Myronenko, Pooya Ashtari, Sabine Van Huffel, Hyun-su Jeong, Chi-ho Yoon, Chulhong Kim, Jiayu Huo, Sebastien Ourselin, Rachel Sparks, Albert Clèrigues, Arnau Oliver, Xavier Lladó, Liam Chalcroft, Ioannis Pappas, Jeroen Bertels, Ewout Heylen, Juliette Moreau, Nima Hatami, Carole Frindel, Abdul Qayyum, Moona Mazher, Domenec Puig, Shao-Chieh Lin, Chun-Jung Juan, Tianxi Hu, Lyndon Boone, Maged Goubran, Yi-Jui Liu, Susanne Wegener, Florian Kofler, Ivan Ezhov, Suprosanna Shit, Moritz R. Hernandez Petzsche, Bjoern Menze, Jan S. Kirschke, Benedikt Wiestler

Figure 1 for A Robust Ensemble Algorithm for Ischemic Stroke Lesion Segmentation: Generalizability and Clinical Utility Beyond the ISLES Challenge
Figure 2 for A Robust Ensemble Algorithm for Ischemic Stroke Lesion Segmentation: Generalizability and Clinical Utility Beyond the ISLES Challenge
Figure 3 for A Robust Ensemble Algorithm for Ischemic Stroke Lesion Segmentation: Generalizability and Clinical Utility Beyond the ISLES Challenge
Figure 4 for A Robust Ensemble Algorithm for Ischemic Stroke Lesion Segmentation: Generalizability and Clinical Utility Beyond the ISLES Challenge
Viaarxiv icon

Knowledge Distillation for Adaptive MRI Prostate Segmentation Based on Limit-Trained Multi-Teacher Models

Add code
Bookmark button
Alert button
Mar 16, 2023
Eddardaa Ben Loussaief, Hatem Rashwan, Mohammed Ayad, Mohammed Zakaria Hassan, Domenec Puig

Figure 1 for Knowledge Distillation for Adaptive MRI Prostate Segmentation Based on Limit-Trained Multi-Teacher Models
Figure 2 for Knowledge Distillation for Adaptive MRI Prostate Segmentation Based on Limit-Trained Multi-Teacher Models
Figure 3 for Knowledge Distillation for Adaptive MRI Prostate Segmentation Based on Limit-Trained Multi-Teacher Models
Figure 4 for Knowledge Distillation for Adaptive MRI Prostate Segmentation Based on Limit-Trained Multi-Teacher Models
Viaarxiv icon

Fetal Brain Tissue Annotation and Segmentation Challenge Results

Add code
Bookmark button
Alert button
Apr 20, 2022
Kelly Payette, Hongwei Li, Priscille de Dumast, Roxane Licandro, Hui Ji, Md Mahfuzur Rahman Siddiquee, Daguang Xu, Andriy Myronenko, Hao Liu, Yuchen Pei, Lisheng Wang, Ying Peng, Juanying Xie, Huiquan Zhang, Guiming Dong, Hao Fu, Guotai Wang, ZunHyan Rieu, Donghyeon Kim, Hyun Gi Kim, Davood Karimi, Ali Gholipour, Helena R. Torres, Bruno Oliveira, João L. Vilaça, Yang Lin, Netanell Avisdris, Ori Ben-Zvi, Dafna Ben Bashat, Lucas Fidon, Michael Aertsen, Tom Vercauteren, Daniel Sobotka, Georg Langs, Mireia Alenyà, Maria Inmaculada Villanueva, Oscar Camara, Bella Specktor Fadida, Leo Joskowicz, Liao Weibin, Lv Yi, Li Xuesong, Moona Mazher, Abdul Qayyum, Domenec Puig, Hamza Kebiri, Zelin Zhang, Xinyi Xu, Dan Wu, KuanLun Liao, YiXuan Wu, JinTai Chen, Yunzhi Xu, Li Zhao, Lana Vasung, Bjoern Menze, Meritxell Bach Cuadra, Andras Jakab

Figure 1 for Fetal Brain Tissue Annotation and Segmentation Challenge Results
Figure 2 for Fetal Brain Tissue Annotation and Segmentation Challenge Results
Figure 3 for Fetal Brain Tissue Annotation and Segmentation Challenge Results
Figure 4 for Fetal Brain Tissue Annotation and Segmentation Challenge Results
Viaarxiv icon

GCNDepth: Self-supervised Monocular Depth Estimation based on Graph Convolutional Network

Add code
Bookmark button
Alert button
Dec 13, 2021
Armin Masoumian, Hatem A. Rashwan, Saddam Abdulwahab, Julian Cristiano, Domenec Puig

Figure 1 for GCNDepth: Self-supervised Monocular Depth Estimation based on Graph Convolutional Network
Figure 2 for GCNDepth: Self-supervised Monocular Depth Estimation based on Graph Convolutional Network
Figure 3 for GCNDepth: Self-supervised Monocular Depth Estimation based on Graph Convolutional Network
Figure 4 for GCNDepth: Self-supervised Monocular Depth Estimation based on Graph Convolutional Network
Viaarxiv icon

Absolute distance prediction based on deep learning object detection and monocular depth estimation models

Add code
Bookmark button
Alert button
Nov 02, 2021
Armin Masoumian, David G. F. Marei, Saddam Abdulwahab, Julian Cristiano, Domenec Puig, Hatem A. Rashwan

Figure 1 for Absolute distance prediction based on deep learning object detection and monocular depth estimation models
Figure 2 for Absolute distance prediction based on deep learning object detection and monocular depth estimation models
Figure 3 for Absolute distance prediction based on deep learning object detection and monocular depth estimation models
Figure 4 for Absolute distance prediction based on deep learning object detection and monocular depth estimation models
Viaarxiv icon

AWEU-Net: An Attention-Aware Weight Excitation U-Net for Lung Nodule Segmentation

Add code
Bookmark button
Alert button
Oct 11, 2021
Syeda Furruka Banu, Md. Mostafa Kamal Sarker, Mohamed Abdel-Nasser, Domenec Puig, Hatem A. Raswan

Figure 1 for AWEU-Net: An Attention-Aware Weight Excitation U-Net for Lung Nodule Segmentation
Figure 2 for AWEU-Net: An Attention-Aware Weight Excitation U-Net for Lung Nodule Segmentation
Figure 3 for AWEU-Net: An Attention-Aware Weight Excitation U-Net for Lung Nodule Segmentation
Figure 4 for AWEU-Net: An Attention-Aware Weight Excitation U-Net for Lung Nodule Segmentation
Viaarxiv icon

Adversarial Learning with Multiscale Features and Kernel Factorization for Retinal Blood Vessel Segmentation

Add code
Bookmark button
Alert button
Jul 05, 2019
Farhan Akram, Vivek Kumar Singh, Hatem A. Rashwan, Mohamed Abdel-Nasser, Md. Mostafa Kamal Sarker, Nidhi Pandey, Domenec Puig

Figure 1 for Adversarial Learning with Multiscale Features and Kernel Factorization for Retinal Blood Vessel Segmentation
Figure 2 for Adversarial Learning with Multiscale Features and Kernel Factorization for Retinal Blood Vessel Segmentation
Figure 3 for Adversarial Learning with Multiscale Features and Kernel Factorization for Retinal Blood Vessel Segmentation
Figure 4 for Adversarial Learning with Multiscale Features and Kernel Factorization for Retinal Blood Vessel Segmentation
Viaarxiv icon

An Efficient Solution for Breast Tumor Segmentation and Classification in Ultrasound Images Using Deep Adversarial Learning

Add code
Bookmark button
Alert button
Jul 01, 2019
Vivek Kumar Singh, Hatem A. Rashwan, Mohamed Abdel-Nasser, Md. Mostafa Kamal Sarker, Farhan Akram, Nidhi Pandey, Santiago Romani, Domenec Puig

Figure 1 for An Efficient Solution for Breast Tumor Segmentation and Classification in Ultrasound Images Using Deep Adversarial Learning
Figure 2 for An Efficient Solution for Breast Tumor Segmentation and Classification in Ultrasound Images Using Deep Adversarial Learning
Figure 3 for An Efficient Solution for Breast Tumor Segmentation and Classification in Ultrasound Images Using Deep Adversarial Learning
Figure 4 for An Efficient Solution for Breast Tumor Segmentation and Classification in Ultrasound Images Using Deep Adversarial Learning
Viaarxiv icon

MobileGAN: Skin Lesion Segmentation Using a Lightweight Generative Adversarial Network

Add code
Bookmark button
Alert button
Jul 01, 2019
Md. Mostafa Kamal Sarker, Hatem A. Rashwan, Mohamed Abdel-Nasser, Vivek Kumar Singh, Syeda Furruka Banu, Farhan Akram, Forhad U H Chowdhury, Kabir Ahmed Choudhury, Sylvie Chambon, Petia Radeva, Domenec Puig

Figure 1 for MobileGAN: Skin Lesion Segmentation Using a Lightweight Generative Adversarial Network
Figure 2 for MobileGAN: Skin Lesion Segmentation Using a Lightweight Generative Adversarial Network
Figure 3 for MobileGAN: Skin Lesion Segmentation Using a Lightweight Generative Adversarial Network
Figure 4 for MobileGAN: Skin Lesion Segmentation Using a Lightweight Generative Adversarial Network
Viaarxiv icon