Abstract:Developing generalist agents that can operate across diverse tasks, environments, and physical embodiments is a grand challenge in robotics and artificial intelligence. In this work, we focus on the axis of embodiment and investigate embodiment scaling laws$\unicode{x2013}$the hypothesis that increasing the number of training embodiments improves generalization to unseen ones. Using robot locomotion as a test bed, we procedurally generate a dataset of $\sim$1,000 varied embodiments, spanning humanoids, quadrupeds, and hexapods, and train generalist policies capable of handling diverse observation and action spaces on random subsets. We find that increasing the number of training embodiments improves generalization to unseen ones, and scaling embodiments is more effective in enabling embodiment-level generalization than scaling data on small, fixed sets of embodiments. Notably, our best policy, trained on the full dataset, zero-shot transfers to novel embodiments in the real world, such as Unitree Go2 and H1. These results represent a step toward general embodied intelligence, with potential relevance to adaptive control for configurable robots, co-design of morphology and control, and beyond.
Abstract:Hexapod robots are potentially suitable for carrying out tasks in cluttered environments since they are stable, compact, and light weight. They also have multi-joint legs and variable height bodies that make them good candidates for tasks such as stairs climbing and squeezing under objects in a typical home environment or an attic. Expanding on our previous work on joist climbing in attics, we train a legged hexapod equipped with a depth camera and visual inertial odometry (VIO) to perform three tasks: climbing stairs, avoiding obstacles, and squeezing under obstacles such as a table. Our policies are trained with simulation data only and can be deployed on lowcost hardware not requiring real-time joint state feedback. We train our model in a teacher-student model with 2 phases: In phase 1, we use reinforcement learning with access to privileged information such as height maps and joint feedback. In phase 2, we use supervised learning to distill the model into one with access to only onboard observations, consisting of egocentric depth images and robot pose captured by a tracking VIO camera. By manipulating available privileged information, constructing simulation terrains, and refining reward functions during phase 1 training, we are able to train the robots with skills that are robust in non-ideal physical environments. We demonstrate successful sim-to-real transfer and achieve high success rates across all three tasks in physical experiments.