Get our free extension to see links to code for papers anywhere online!Free add-on: code for papers everywhere!Free add-on: See code for papers anywhere!

Selecting high-quality data for pre-training is crucial in shaping the downstream task performance of language models. A major challenge lies in identifying this optimal subset, a problem generally considered intractable, thus necessitating scalable and effective heuristics. In this work, we propose a data selection method, CoLoR-Filter (Conditional Loss Reduction Filtering), which leverages an empirical Bayes-inspired approach to derive a simple and computationally efficient selection criterion based on the relative loss values of two auxiliary models. In addition to the modeling rationale, we evaluate CoLoR-Filter empirically on two language modeling tasks: (1) selecting data from C4 for domain adaptation to evaluation on Books and (2) selecting data from C4 for a suite of downstream multiple-choice question answering tasks. We demonstrate favorable scaling both as we subselect more aggressively and using small auxiliary models to select data for large target models. As one headline result, CoLoR-Filter data selected using a pair of 150m parameter auxiliary models can train a 1.2b parameter target model to match a 1.2b parameter model trained on 25b randomly selected tokens with 25x less data for Books and 11x less data for the downstream tasks. Code: https://github.com/davidbrandfonbrener/color-filter-olmo Filtered data: https://huggingface.co/datasets/davidbrandfonbrener/color-filtered-c4

Via

We present an approach called Q-probing to adapt a pre-trained language model to maximize a task-specific reward function. At a high level, Q-probing sits between heavier approaches such as finetuning and lighter approaches such as few shot prompting, but can also be combined with either. The idea is to learn a simple linear function on a model's embedding space that can be used to reweight candidate completions. We theoretically show that this sampling procedure is equivalent to a KL-constrained maximization of the Q-probe as the number of samples increases. To train the Q-probes we consider either reward modeling or a class of novel direct policy learning objectives based on importance weighted policy gradients. With this technique, we see gains in domains with ground-truth rewards (code generation) as well as implicit rewards defined by preference data, even outperforming finetuning in data-limited regimes. Moreover, a Q-probe can be trained on top of an API since it only assumes access to sampling and embeddings. Code: https://github.com/likenneth/q_probe .

Via

David Brandfonbrener, Sibi Raja, Tarun Prasad, Chloe Loughridge, Jianang Yang, Simon Henniger, William E. Byrd, Robert Zinkov, Nada Amin

We present an approach using Monte Carlo Tree Search (MCTS) to guide Large Language Models (LLMs) to generate verified programs in Dafny, Lean and Coq. Our method, which we call VMCTS, leverages the verifier inside the search algorithm by checking partial programs at each step. In combination with the LLM prior, the verifier feedback raises the synthesis capabilities of open source models. On a set of five verified programming problems, we find that in four problems where the base model cannot solve the question even when re-sampling solutions for one hour, VMCTS can solve the problems within 6 minutes. The base model with VMCTS is even competitive with ChatGPT4 augmented with plugins and multiple re-tries on these problems. Our code and benchmarks are available at https://github.com/namin/llm-verified-with-monte-carlo-tree-search .

Via

Transformers are the dominant architecture for sequence modeling, but there is growing interest in models that use a fixed-size latent state that does not depend on the sequence length, which we refer to as "generalized state space models" (GSSMs). In this paper we show that while GSSMs are promising in terms of inference-time efficiency, they are limited compared to transformer models on tasks that require copying from the input context. We start with a theoretical analysis of the simple task of string copying and prove that a two layer transformer can copy strings of exponential length while GSSMs are fundamentally limited by their fixed-size latent state. Empirically, we find that transformers outperform GSSMs in terms of efficiency and generalization on synthetic tasks that require copying the context. Finally, we evaluate pretrained large language models and find that transformer models dramatically outperform state space models at copying and retrieving information from context. Taken together, these results suggest a fundamental gap between transformers and GSSMs on tasks of practical interest.

Via

In recent years, domains such as natural language processing and image recognition have popularized the paradigm of using large datasets to pretrain representations that can be effectively transferred to downstream tasks. In this work we evaluate how such a paradigm should be done in imitation learning, where both pretraining and finetuning data are trajectories collected by experts interacting with an unknown environment. Namely, we consider a setting where the pretraining corpus consists of multitask demonstrations and the task for each demonstration is set by an unobserved latent context variable. The goal is to use the pretraining corpus to learn a low dimensional representation of the high dimensional (e.g., visual) observation space which can be transferred to a novel context for finetuning on a limited dataset of demonstrations. Among a variety of possible pretraining objectives, we argue that inverse dynamics modeling -- i.e., predicting an action given the observations appearing before and after it in the demonstration -- is well-suited to this setting. We provide empirical evidence of this claim through evaluations on a variety of simulated visuomotor manipulation problems. While previous work has attempted various theoretical explanations regarding the benefit of inverse dynamics modeling, we find that these arguments are insufficient to explain the empirical advantages often observed in our settings, and so we derive a novel analysis using a simple but general environment model.

Via

We consider how to most efficiently leverage teleoperator time to collect data for learning robust image-based value functions and policies for sparse reward robotic tasks. To accomplish this goal, we modify the process of data collection to include more than just successful demonstrations of the desired task. Instead we develop a novel protocol that we call Visual Backtracking Teleoperation (VBT), which deliberately collects a dataset of visually similar failures, recoveries, and successes. VBT data collection is particularly useful for efficiently learning accurate value functions from small datasets of image-based observations. We demonstrate VBT on a real robot to perform continuous control from image observations for the deformable manipulation task of T-shirt grasping. We find that by adjusting the data collection process we improve the quality of both the learned value functions and policies over a variety of baseline methods for data collection. Specifically, we find that offline reinforcement learning on VBT data outperforms standard behavior cloning on successful demonstration data by 13% when both methods are given equal-sized datasets of 60 minutes of data from the real robot.

Via

Most theoretically motivated work in the offline reinforcement learning setting requires precise uncertainty estimates. This requirement restricts the algorithms derived in that work to the tabular and linear settings where such estimates exist. In this work, we develop a novel method for incorporating scalable uncertainty estimates into an offline reinforcement learning algorithm called deep-SPIBB that extends the SPIBB family of algorithms to environments with larger state and action spaces. We use recent innovations in uncertainty estimation from the deep learning community to get more scalable uncertainty estimates to plug into deep-SPIBB. While these uncertainty estimates do not allow for the same theoretical guarantees as in the tabular case, we argue that the SPIBB mechanism for incorporating uncertainty is more robust and flexible than pessimistic approaches that incorporate the uncertainty as a value function penalty. We bear this out empirically, showing that deep-SPIBB outperforms pessimism based approaches with access to the same uncertainty estimates and performs at least on par with a variety of other strong baselines across several environments and datasets.

Via

Several recent works have proposed a class of algorithms for the offline reinforcement learning (RL) problem that we will refer to as return-conditioned supervised learning (RCSL). RCSL algorithms learn the distribution of actions conditioned on both the state and the return of the trajectory. Then they define a policy by conditioning on achieving high return. In this paper, we provide a rigorous study of the capabilities and limitations of RCSL, something which is crucially missing in previous work. We find that RCSL returns the optimal policy under a set of assumptions that are stronger than those needed for the more traditional dynamic programming-based algorithms. We provide specific examples of MDPs and datasets that illustrate the necessity of these assumptions and the limits of RCSL. Finally, we present empirical evidence that these limitations will also cause issues in practice by providing illustrative experiments in simple point-mass environments and on datasets from the D4RL benchmark.

Via

Denis Yarats, David Brandfonbrener, Hao Liu, Michael Laskin, Pieter Abbeel, Alessandro Lazaric, Lerrel Pinto

Recent progress in deep learning has relied on access to large and diverse datasets. Such data-driven progress has been less evident in offline reinforcement learning (RL), because offline RL data is usually collected to optimize specific target tasks limiting the data's diversity. In this work, we propose Exploratory data for Offline RL (ExORL), a data-centric approach to offline RL. ExORL first generates data with unsupervised reward-free exploration, then relabels this data with a downstream reward before training a policy with offline RL. We find that exploratory data allows vanilla off-policy RL algorithms, without any offline-specific modifications, to outperform or match state-of-the-art offline RL algorithms on downstream tasks. Our findings suggest that data generation is as important as algorithmic advances for offline RL and hence requires careful consideration from the community. Code and data can be found at https://github.com/denisyarats/exorl .

Via

We introduce quantile filtered imitation learning (QFIL), a novel policy improvement operator designed for offline reinforcement learning. QFIL performs policy improvement by running imitation learning on a filtered version of the offline dataset. The filtering process removes $ s,a $ pairs whose estimated Q values fall below a given quantile of the pushforward distribution over values induced by sampling actions from the behavior policy. The definitions of both the pushforward Q distribution and resulting value function quantile are key contributions of our method. We prove that QFIL gives us a safe policy improvement step with function approximation and that the choice of quantile provides a natural hyperparameter to trade off bias and variance of the improvement step. Empirically, we perform a synthetic experiment illustrating how QFIL effectively makes a bias-variance tradeoff and we see that QFIL performs well on the D4RL benchmark.

Via