Abstract:Learning analytics researchers often analyze qualitative student data such as coded annotations or interview transcripts to understand learning processes. With the rise of generative AI, fully automated and human-AI workflows have emerged as promising methods for analysis. However, methodological standards to guide such workflows remain limited. In this study, we propose that reasoning traces generated by large language model (LLM) agents, especially within multi-agent systems, constitute a novel and rich form of process data to enhance interpretive practices in qualitative coding. We apply cosine similarity to LLM reasoning traces to systematically detect, quantify, and interpret disagreements among agents, reframing disagreement as a meaningful analytic signal. Analyzing nearly 10,000 instances of agent pairs coding human tutoring dialog segments, we show that LLM agents' semantic reasoning similarity robustly differentiates consensus from disagreement and correlates with human coding reliability. Qualitative analysis guided by this metric reveals nuanced instructional sub-functions within codes and opportunities for conceptual codebook refinement. By integrating quantitative similarity metrics with qualitative review, our method has the potential to improve and accelerate establishing inter-rater reliability during coding by surfacing interpretive ambiguity, especially when LLMs collaborate with humans. We discuss how reasoning-trace disagreements represent a valuable new class of analytic signals advancing methodological rigor and interpretive depth in educational research.
Abstract:The field of learning analytics has made notable strides in automating the detection of complex learning processes in multimodal data. However, most advancements have focused on individualized problem-solving instead of collaborative, open-ended problem-solving, which may offer both affordances (richer data) and challenges (low cohesion) to behavioral prediction. Here, we extend predictive models to automatically detect socially shared regulation of learning (SSRL) behaviors in collaborative computational modeling environments using embedding-based approaches. We leverage large language models (LLMs) as summarization tools to generate task-aware representations of student dialogue aligned with system logs. These summaries, combined with text-only embeddings, context-enriched embeddings, and log-derived features, were used to train predictive models. Results show that text-only embeddings often achieve stronger performance in detecting SSRL behaviors related to enactment or group dynamics (e.g., off-task behavior or requesting assistance). In contrast, contextual and multimodal features provide complementary benefits for constructs such as planning and reflection. Overall, our findings highlight the promise of embedding-based models for extending learning analytics by enabling scalable detection of SSRL behaviors, ultimately supporting real-time feedback and adaptive scaffolding in collaborative learning environments that teachers value.
Abstract:Open-ended responses are central to learning, yet automated scoring often conflates what students wrote with how teachers grade. We present an analytics-first framework that separates content signals from rater tendencies, making judgments visible and auditable via analytics. Using de-identified ASSISTments mathematics responses, we model teacher histories as dynamic priors and derive text representations from sentence embeddings, incorporating centering and residualization to mitigate prompt and teacher confounds. Temporally-validated linear models quantify the contributions of each signal, and a projection surfaces model disagreements for qualitative inspection. Results show that teacher priors heavily influence grade predictions; the strongest results arise when priors are combined with content embeddings (AUC~0.815), while content-only models remain above chance but substantially weaker (AUC~0.626). Adjusting for rater effects sharpens the residual content representation, retaining more informative embedding dimensions and revealing cases where semantic evidence supports understanding as opposed to surface-level differences in how students respond. The contribution presents a practical pipeline that transforms embeddings from mere features into learning analytics for reflection, enabling teachers and researchers to examine where grading practices align (or conflict) with evidence of student reasoning and learning.
Abstract:As teachers increasingly turn to GenAI in their educational practice, we need robust methods to benchmark large language models (LLMs) for pedagogical purposes. This article presents an embedding-based benchmarking framework to detect bias in LLMs in the context of formative feedback. Using 600 authentic student essays from the AES 2.0 corpus, we constructed controlled counterfactuals along two dimensions: (i) implicit cues via lexicon-based swaps of gendered terms within essays, and (ii) explicit cues via gendered author background in the prompt. We investigated six representative LLMs (i.e. GPT-5 mini, GPT-4o mini, DeepSeek-R1, DeepSeek-R1-Qwen, Gemini 2.5 Pro, Llama-3-8B). We first quantified the response divergence with cosine and Euclidean distances over sentence embeddings, then assessed significance via permutation tests, and finally, visualised structure using dimensionality reduction. In all models, implicit manipulations reliably induced larger semantic shifts for male-female counterfactuals than for female-male. Only the GPT and Llama models showed sensitivity to explicit gender cues. These findings show that even state-of-the-art LLMs exhibit asymmetric semantic responses to gender substitutions, suggesting persistent gender biases in feedback they provide learners. Qualitative analyses further revealed consistent linguistic differences (e.g., more autonomy-supportive feedback under male cues vs. more controlling feedback under female cues). We discuss implications for fairness auditing of pedagogical GenAI, propose reporting standards for counterfactual evaluation in learning analytics, and outline practical guidance for prompt design and deployment to safeguard equitable feedback.
Abstract:Humans can be notoriously imperfect evaluators. They are often biased, unreliable, and unfit to define "ground truth." Yet, given the surging need to produce large amounts of training data in educational applications using AI, traditional inter-rater reliability (IRR) metrics like Cohen's kappa remain central to validating labeled data. IRR remains a cornerstone of many machine learning pipelines for educational data. Take, for example, the classification of tutors' moves in dialogues or labeling open responses in machine-graded assessments. This position paper argues that overreliance on human IRR as a gatekeeper for annotation quality hampers progress in classifying data in ways that are valid and predictive in relation to improving learning. To address this issue, we highlight five examples of complementary evaluation methods, such as multi-label annotation schemes, expert-based approaches, and close-the-loop validity. We argue that these approaches are in a better position to produce training data and subsequent models that produce improved student learning and more actionable insights than IRR approaches alone. We also emphasize the importance of external validity, for example, by establishing a procedure of validating tutor moves and demonstrating that it works across many categories of tutor actions (e.g., providing hints). We call on the field to rethink annotation quality and ground truth--prioritizing validity and educational impact over consensus alone.
Abstract:Large Language Models (LLMs) hold promise as dynamic instructional aids. Yet, it remains unclear whether LLMs can replicate the adaptivity of intelligent tutoring systems (ITS)--where student knowledge and pedagogical strategies are explicitly modeled. We propose a prompt variation framework to assess LLM-generated instructional moves' adaptivity and pedagogical soundness across 75 real-world tutoring scenarios from an ITS. We systematically remove key context components (e.g., student errors and knowledge components) from prompts to create variations of each scenario. Three representative LLMs (Llama3-8B, Llama3-70B, and GPT-4o) generate 1,350 instructional moves. We use text embeddings and randomization tests to measure how the omission of each context feature impacts the LLMs' outputs (adaptivity) and a validated tutor-training classifier to evaluate response quality (pedagogical soundness). Surprisingly, even the best-performing model only marginally mimics the adaptivity of ITS. Specifically, Llama3-70B demonstrates statistically significant adaptivity to student errors. Although Llama3-8B's recommendations receive higher pedagogical soundness scores than the other models, it struggles with instruction-following behaviors, including output formatting. By contrast, GPT-4o reliably adheres to instructions but tends to provide overly direct feedback that diverges from effective tutoring, prompting learners with open-ended questions to gauge knowledge. Given these results, we discuss how current LLM-based tutoring is unlikely to produce learning benefits rivaling known-to-be-effective ITS tutoring. Through our open-source benchmarking code, we contribute a reproducible method for evaluating LLMs' instructional adaptivity and fidelity.



Abstract:Large Language Models (LLMs) like GPT-4o can help automate text classification tasks at low cost and scale. However, there are major concerns about the validity and reliability of LLM outputs. By contrast, human coding is generally more reliable but expensive to procure at scale. In this study, we propose a hybrid solution to leverage the strengths of both. We combine human-coded data and synthetic LLM-produced data to fine-tune a classical machine learning classifier, distilling both into a smaller BERT model. We evaluate our method on a human-coded test set as a validity measure for LLM output quality. In three experiments, we systematically vary LLM-generated samples' size, variety, and consistency, informed by best practices in LLM tuning. Our findings indicate that augmenting datasets with synthetic samples improves classifier performance, with optimal results achieved at an 80% synthetic to 20% human-coded data ratio. Lower temperature settings of 0.3, corresponding to less variability in LLM generations, produced more stable improvements but also limited model learning from augmented samples. In contrast, higher temperature settings (0.7 and above) introduced greater variability in performance estimates and, at times, lower performance. Hence, LLMs may produce more uniform output that classifiers overfit to earlier or produce more diverse output that runs the risk of deteriorating model performance through information irrelevant to the prediction task. Filtering out inconsistent synthetic samples did not enhance performance. We conclude that integrating human and LLM-generated data to improve text classification models in assessment offers a scalable solution that leverages both the accuracy of human coding and the variety of LLM outputs.




Abstract:Algorithmic bias is a pressing concern in educational data mining (EDM), as it risks amplifying inequities in learning outcomes. The Area Between ROC Curves (ABROCA) metric is frequently used to measure discrepancies in model performance across demographic groups to quantify overall model fairness. However, its skewed distribution--especially when class or group imbalances exist--makes significance testing challenging. This study investigates ABROCA's distributional properties and contributes robust methods for its significance testing. Specifically, we address (1) whether ABROCA follows any known distribution, (2) how to reliably test for algorithmic bias using ABROCA, and (3) the statistical power achievable with ABROCA-based bias assessments under typical EDM sample specifications. Simulation results confirm that ABROCA does not match standard distributions, including those suited to accommodate skewness. We propose nonparametric randomization tests for ABROCA and demonstrate that reliably detecting bias with ABROCA requires large sample sizes or substantial effect sizes, particularly in imbalanced settings. Findings suggest that ABROCA-based bias evaluation based on sample sizes common in EDM tends to be underpowered, undermining the reliability of conclusions about model fairness. By offering open-source code to simulate power and statistically test ABROCA, this paper aims to foster more reliable statistical testing in EDM research. It supports broader efforts toward replicability and equity in educational modeling.




Abstract:Caregivers (i.e., parents and members of a child's caring community) are underappreciated stakeholders in learning analytics. Although caregiver involvement can enhance student academic outcomes, many obstacles hinder involvement, most notably knowledge gaps with respect to modern school curricula. An emerging topic of interest in learning analytics is hybrid tutoring, which includes instructional and motivational support. Caregivers assert similar roles in homework, yet it is unknown how learning analytics can support them. Our past work with caregivers suggested that conversational support is a promising method of providing caregivers with the guidance needed to effectively support student learning. We developed a system that provides instructional support to caregivers through conversational recommendations generated by a Large Language Model (LLM). Addressing known instructional limitations of LLMs, we use instructional intelligence from tutoring systems while conducting prompt engineering experiments with the open-source Llama 3 LLM. This LLM generated message recommendations for caregivers supporting their child's math practice via chat. Few-shot prompting and combining real-time problem-solving context from tutoring systems with examples of tutoring practices yielded desirable message recommendations. These recommendations were evaluated with ten middle school caregivers, who valued recommendations facilitating content-level support and student metacognition through self-explanation. We contribute insights into how tutoring systems can best be merged with LLMs to support hybrid tutoring settings through conversational assistance, facilitating effective caregiver involvement in tutoring systems.




Abstract:Equity is a core concern of learning analytics. However, applications that teach and assess equity skills, particularly at scale are lacking, often due to barriers in evaluating language. Advances in generative AI via large language models (LLMs) are being used in a wide range of applications, with this present work assessing its use in the equity domain. We evaluate tutor performance within an online lesson on enhancing tutors' skills when responding to students in potentially inequitable situations. We apply a mixed-method approach to analyze the performance of 81 undergraduate remote tutors. We find marginally significant learning gains with increases in tutors' self-reported confidence in their knowledge in responding to middle school students experiencing possible inequities from pretest to posttest. Both GPT-4o and GPT-4-turbo demonstrate proficiency in assessing tutors ability to predict and explain the best approach. Balancing performance, efficiency, and cost, we determine that few-shot learning using GPT-4o is the preferred model. This work makes available a dataset of lesson log data, tutor responses, rubrics for human annotation, and generative AI prompts. Future work involves leveling the difficulty among scenarios and enhancing LLM prompts for large-scale grading and assessment.