Abstract:Understanding and predicting the behavior of large-scale multi-agents in games remains a fundamental challenge in multi-agent systems. This paper examines the role of heterogeneity in equilibrium formation by analyzing how smooth regret-matching drives a large number of heterogeneous agents with diverse initial policies toward unified behavior. By modeling the system state as a probability distribution of regrets and analyzing its evolution through the continuity equation, we uncover a key phenomenon in diverse multi-agent settings: the variance of the regret distribution diminishes over time, leading to the disappearance of heterogeneity and the emergence of consensus among agents. This universal result enables us to prove convergence to quantal response equilibria in both competitive and cooperative multi-agent settings. Our work advances the theoretical understanding of multi-agent learning and offers a novel perspective on equilibrium selection in diverse game-theoretic scenarios.
Abstract:The study of cooperation within social dilemmas has long been a fundamental topic across various disciplines, including computer science and social science. Recent advancements in Artificial Intelligence (AI) have significantly reshaped this field, offering fresh insights into understanding and enhancing cooperation. This survey examines three key areas at the intersection of AI and cooperation in social dilemmas. First, focusing on multi-agent cooperation, we review the intrinsic and external motivations that support cooperation among rational agents, and the methods employed to develop effective strategies against diverse opponents. Second, looking into human-agent cooperation, we discuss the current AI algorithms for cooperating with humans and the human biases towards AI agents. Third, we review the emergent field of leveraging AI agents to enhance cooperation among humans. We conclude by discussing future research avenues, such as using large language models, establishing unified theoretical frameworks, revisiting existing theories of human cooperation, and exploring multiple real-world applications.