Abstract:In robots task and motion planning (TAMP), it is crucial to sample within the robot's configuration space to meet task-level global constraints and enhance the efficiency of subsequent motion planning. Due to the complexity of joint configuration sampling under multi-level constraints, traditional methods often lack efficiency. This paper introduces the principle of RobKiNet, a kinematics-informed neural network, for end-to-end sampling within the Continuous Feasible Set (CFS) under multiple constraints in configuration space, establishing its Optimization Expectation Model. Comparisons with traditional sampling and learning-based approaches reveal that RobKiNet's kinematic knowledge infusion enhances training efficiency by ensuring stable and accurate gradient optimization.Visualizations and quantitative analyses in a 2-DOF space validate its theoretical efficiency, while its application on a 9-DOF autonomous mobile manipulator robot(AMMR) demonstrates superior whole-body and decoupled control, excelling in battery disassembly tasks. RobKiNet outperforms deep reinforcement learning with a training speed 74.29 times faster and a sampling accuracy of up to 99.25%, achieving a 97.33% task completion rate in real-world scenarios.
Abstract:Robust and accurate estimation of liquid height lies as an essential part of pouring tasks for service robots. However, vision-based methods often fail in occluded conditions while audio-based methods cannot work well in a noisy environment. We instead propose a multimodal pouring network (MP-Net) that is able to robustly predict liquid height by conditioning on both audition and haptics input. MP-Net is trained on a self-collected multimodal pouring dataset. This dataset contains 300 robot pouring recordings with audio and force/torque measurements for three types of target containers. We also augment the audio data by inserting robot noise. We evaluated MP-Net on our collected dataset and a wide variety of robot experiments. Both network training results and robot experiments demonstrate that MP-Net is robust against noise and changes to the task and environment. Moreover, we further combine the predicted height and force data to estimate the shape of the target container.