Abstract:Reconstructing accurate surfaces with radiance fields has progressed rapidly, yet two promising explicit representations, 3D Gaussian Splatting and sparse-voxel rasterization, exhibit complementary strengths and weaknesses. 3D Gaussian Splatting converges quickly and carries useful geometric priors, but surface fidelity is limited by its point-like parameterization. Sparse-voxel rasterization provides continuous opacity fields and crisp geometry, but its typical uniform dense-grid initialization slows convergence and underutilizes scene structure. We combine the advantages of both by introducing a voxel initialization method that places voxels at plausible locations and with appropriate levels of detail, yielding a strong starting point for per-scene optimization. To further enhance depth consistency without blurring edges, we propose refined depth geometry supervision that converts multi-view cues into direct per-ray depth regularization. Experiments on standard benchmarks demonstrate improvements over prior methods in geometric accuracy, better fine-structure recovery, and more complete surfaces, while maintaining fast convergence.
Abstract:Learning from videos offers a promising path toward generalist robots by providing rich visual and temporal priors beyond what real robot datasets contain. While existing video generative models produce impressive visual predictions, they are difficult to translate into low-level actions. Conversely, latent-action models better align videos with actions, but they typically operate at the single-step level and lack high-level planning capabilities. We bridge this gap by introducing Skill Abstraction from Optical Flow (SOF), a framework that learns latent skills from large collections of action-free videos. Our key idea is to learn a latent skill space through an intermediate representation based on optical flow that captures motion information aligned with both video dynamics and robot actions. By learning skills in this flow-based latent space, SOF enables high-level planning over video-derived skills and allows for easier translation of these skills into actions. Experiments show that our approach consistently improves performance in both multitask and long-horizon settings, demonstrating the ability to acquire and compose skills directly from raw visual data.