Abstract:Learning from videos offers a promising path toward generalist robots by providing rich visual and temporal priors beyond what real robot datasets contain. While existing video generative models produce impressive visual predictions, they are difficult to translate into low-level actions. Conversely, latent-action models better align videos with actions, but they typically operate at the single-step level and lack high-level planning capabilities. We bridge this gap by introducing Skill Abstraction from Optical Flow (SOF), a framework that learns latent skills from large collections of action-free videos. Our key idea is to learn a latent skill space through an intermediate representation based on optical flow that captures motion information aligned with both video dynamics and robot actions. By learning skills in this flow-based latent space, SOF enables high-level planning over video-derived skills and allows for easier translation of these skills into actions. Experiments show that our approach consistently improves performance in both multitask and long-horizon settings, demonstrating the ability to acquire and compose skills directly from raw visual data.
Abstract:Learning from observation (LfO) aims to imitate experts by learning from state-only demonstrations without requiring action labels. Existing adversarial imitation learning approaches learn a generator agent policy to produce state transitions that are indistinguishable to a discriminator that learns to classify agent and expert state transitions. Despite its simplicity in formulation, these methods are often sensitive to hyperparameters and brittle to train. Motivated by the recent success of diffusion models in generative modeling, we propose to integrate a diffusion model into the adversarial imitation learning from observation framework. Specifically, we employ a diffusion model to capture expert and agent transitions by generating the next state, given the current state. Then, we reformulate the learning objective to train the diffusion model as a binary classifier and use it to provide "realness" rewards for policy learning. Our proposed framework, Diffusion Imitation from Observation (DIFO), demonstrates superior performance in various continuous control domains, including navigation, locomotion, manipulation, and games. Project page: https://nturobotlearninglab.github.io/DIFO