Get our free extension to see links to code for papers anywhere online!Free add-on: code for papers everywhere!Free add-on: See code for papers anywhere!

CELESTE

Abstract:We investigate the Active Clustering Problem (ACP). A learner interacts with an $N$-armed stochastic bandit with $d$-dimensional subGaussian feedback. There exists a hidden partition of the arms into $K$ groups, such that arms within the same group, share the same mean vector. The learner's task is to uncover this hidden partition with the smallest budget - i.e., the least number of observation - and with a probability of error smaller than a prescribed constant $\delta$. In this paper, (i) we derive a non-asymptotic lower bound for the budget, and (ii) we introduce the computationally efficient ACB algorithm, whose budget matches the lower bound in most regimes. We improve on the performance of a uniform sampling strategy. Importantly, contrary to the batch setting, we establish that there is no computation-information gap in the active setting.

Via

Figures and Tables:

Abstract:This paper studies the problem of estimating the order of arrival of the vertices in a random recursive tree. Specifically, we study two fundamental models: the uniform attachment model and the linear preferential attachment model. We propose an order estimator based on the Jordan centrality measure and define a family of risk measures to quantify the quality of the ordering procedure. Moreover, we establish a minimax lower bound for this problem, and prove that the proposed estimator is nearly optimal. Finally, we numerically demonstrate that the proposed estimator outperforms degree-based and spectral ordering procedures.

Via

Figures and Tables:

Abstract:We consider the problem of minimizing a convex function over a closed convex set, with Projected Gradient Descent (PGD). We propose a fully parameter-free version of AdaGrad, which is adaptive to the distance between the initialization and the optimum, and to the sum of the square norm of the subgradients. Our algorithm is able to handle projection steps, does not involve restarts, reweighing along the trajectory or additional gradient evaluations compared to the classical PGD. It also fulfills optimal rates of convergence for cumulative regret up to logarithmic factors. We provide an extension of our approach to stochastic optimization and conduct numerical experiments supporting the developed theory.

Via

Figures and Tables:

Abstract:We consider contextual bandit problems with knapsacks [CBwK], a problem where at each round, a scalar reward is obtained and vector-valued costs are suffered. The learner aims to maximize the cumulative rewards while ensuring that the cumulative costs are lower than some predetermined cost constraints. We assume that contexts come from a continuous set, that costs can be signed, and that the expected reward and cost functions, while unknown, may be uniformly estimated -- a typical assumption in the literature. In this setting, total cost constraints had so far to be at least of order $T^{3/4}$, where $T$ is the number of rounds, and were even typically assumed to depend linearly on $T$. We are however motivated to use CBwK to impose a fairness constraint of equalized average costs between groups: the budget associated with the corresponding cost constraints should be as close as possible to the natural deviations, of order $\sqrt{T}$. To that end, we introduce a dual strategy based on projected-gradient-descent updates, that is able to deal with total-cost constraints of the order of $\sqrt{T}$ up to poly-logarithmic terms. This strategy is more direct and simpler than existing strategies in the literature. It relies on a careful, adaptive, tuning of the step size.

Via

Figures and Tables:

Abstract:Artificial intelligence is increasingly used in a wide range of decision making scenarios with higher and higher stakes. At the same time, recent work has highlighted that these algorithms can be dangerously biased, and that their results often need to be corrected to avoid leading to unfair decisions. In this paper, we study the problem of sequential decision making with biased linear bandit feedback. At each round, a player selects an action described by a covariate and by a sensitive attribute. She receives a reward corresponding to the covariates of the action that she has chosen, but only observe a biased evaluation of this reward, where the bias depends on the sensitive attribute. To tackle this problem, we design a Fair Phased Elimination algorithm. We establish an upper bound on its worst-case regret, showing that it is smaller than C$\kappa$ 1/3 * log(T) 1/3 T 2/3 , where C is a numerical constant and $\kappa$ * an explicit geometrical constant characterizing the difficulty of bias estimation. The worst case regret is higher than the dT 1/2 log(T) regret rate obtained under unbiased feedback. We show that this rate cannot be improved for all instances : we obtain lower bounds on the worst-case regret for some sets of actions showing that this rate is tight up to a sub-logarithmic factor. We also obtain gap-dependent upper bounds on the regret, and establish matching lower bounds for some problem instance. Interestingly, the gap-dependent rates reveal the existence of non-trivial instances where the problem is no more difficult than its unbiased counterpart.

Via

Figures and Tables:

Abstract:To theoretically understand the behavior of trained deep neural networks, it is necessary to study the dynamics induced by gradient methods from a random initialization. However, the nonlinear and compositional structure of these models make these dynamics difficult to analyze. To overcome these challenges, large-width asymptotics have recently emerged as a fruitful viewpoint and led to practical insights on real-world deep networks. For two-layer neural networks, it has been understood via these asymptotics that the nature of the trained model radically changes depending on the scale of the initial random weights, ranging from a kernel regime (for large initial variance) to a feature learning regime (for small initial variance). For deeper networks more regimes are possible, and in this paper we study in detail a specific choice of "small" initialization corresponding to ''mean-field'' limits of neural networks, which we call integrable parameterizations (IPs). First, we show that under standard i.i.d. zero-mean initialization, integrable parameterizations of neural networks with more than four layers start at a stationary point in the infinite-width limit and no learning occurs. We then propose various methods to avoid this trivial behavior and analyze in detail the resulting dynamics. In particular, one of these methods consists in using large initial learning rates, and we show that it is equivalent to a modification of the recently proposed maximal update parameterization $\mu$P. We confirm our results with numerical experiments on image classification tasks, which additionally show a strong difference in behavior between various choices of activation functions that is not yet captured by theory.

Via

Figures and Tables:

Abstract:We consider the problem of estimating latent positions in a one-dimensional torus from pairwise affinities. The observed affinity between a pair of items is modeled as a noisy observation of a function $f(x^*_{i},x^*_{j})$ of the latent positions $x^*_{i},x^*_{j}$ of the two items on the torus. The affinity function $f$ is unknown, and it is only assumed to fulfill some shape constraints ensuring that $f(x,y)$ is large when the distance between $x$ and $y$ is small, and vice-versa. This non-parametric modeling offers a good flexibility to fit data. We introduce an estimation procedure that provably localizes all the latent positions with a maximum error of the order of $\sqrt{\log(n)/n}$, with high-probability. This rate is proven to be minimax optimal. A computationally efficient variant of the procedure is also analyzed under some more restrictive assumptions. Our general results can be instantiated to the problem of statistical seriation, leading to new bounds for the maximum error in the ordering.

Via

Abstract:We provide a setting and a general approach to fair online learning with stochastic sensitive and non-sensitive contexts. The setting is a repeated game between the Player and Nature, where at each stage both pick actions based on the contexts. Inspired by the notion of unawareness, we assume that the Player can only access the non-sensitive context before making a decision, while we discuss both cases of Nature accessing the sensitive contexts and Nature unaware of the sensitive contexts. Adapting Blackwell's approachability theory to handle the case of an unknown contexts' distribution, we provide a general necessary and sufficient condition for learning objectives to be compatible with some fairness constraints. This condition is instantiated on (group-wise) no-regret and (group-wise) calibration objectives, and on demographic parity as an additional constraint. When the objective is not compatible with the constraint, the provided framework permits to characterise the optimal trade-off between the two.

Via

Abstract:The pair-matching problem appears in many applications where one wants to discover good matches between pairs of individuals. Formally, the set of individuals is represented by the nodes of a graph where the edges, unobserved at first, represent the good matches. The algorithm queries pairs of nodes and observes the presence/absence of edges. Its goal is to discover as many edges as possible with a fixed budget of queries. Pair-matching is a particular instance of multi-armed bandit problem in which the arms are pairs of individuals and the rewards are edges linking these pairs. This bandit problem is non-standard though, as each arm can only be played once. Given this last constraint, sublinear regret can be expected only if the graph presents some underlying structure. This paper shows that sublinear regret is achievable in the case where the graph is generated according to a Stochastic Block Model (SBM) with two communities. Optimal regret bounds are computed for this pair-matching problem. They exhibit a phase transition related to the Kesten-Stigund threshold for community detection in SBM. To avoid undesirable features of optimal solutions, the pair-matching problem is also considered in the case where each node is constrained to be sampled less than a given amount of times. We show how this constraint deteriorates optimal regret rates. The paper is concluded by a conjecture regarding the optimal regret when the number of communities is larger than $2$. Contrary to the two communities case, we believe that a statistical-computational gap would appear in this problem.

Via

Abstract:We investigate the clustering performances of the relaxed $K$means in the setting of sub-Gaussian Mixture Model (sGMM) and Stochastic Block Model (SBM). After identifying the appropriate signal-to-noise ratio (SNR), we prove that the misclassification error decay exponentially fast with respect to this SNR. These partial recovery bounds for the relaxed $K$means improve upon results currently known in the sGMM setting. In the SBM setting, applying the relaxed $K$means SDP allows to handle general connection probabilities whereas other SDPs investigated in the literature are restricted to the assortative case (where within group probabilities are larger than between group probabilities). Again, this partial recovery bound complements the state-of-the-art results. All together, these results put forward the versatility of the relaxed $K$means.

Via