Abstract:Offline preference optimization is a key method for enhancing and controlling the quality of Large Language Model (LLM) outputs. Typically, preference optimization is approached as an offline supervised learning task using manually-crafted convex loss functions. While these methods are based on theoretical insights, they are inherently constrained by human creativity, so the large search space of possible loss functions remains under explored. We address this by performing LLM-driven objective discovery to automatically discover new state-of-the-art preference optimization algorithms without (expert) human intervention. Specifically, we iteratively prompt an LLM to propose and implement new preference optimization loss functions based on previously-evaluated performance metrics. This process leads to the discovery of previously-unknown and performant preference optimization algorithms. The best performing of these we call Discovered Preference Optimization (DiscoPOP), a novel algorithm that adaptively blends logistic and exponential losses. Experiments demonstrate the state-of-the-art performance of DiscoPOP and its successful transfer to held-out tasks.
Abstract:Cultural accumulation drives the open-ended and diverse progress in capabilities spanning human history. It builds an expanding body of knowledge and skills by combining individual exploration with inter-generational information transmission. Despite its widespread success among humans, the capacity for artificial learning agents to accumulate culture remains under-explored. In particular, approaches to reinforcement learning typically strive for improvements over only a single lifetime. Generational algorithms that do exist fail to capture the open-ended, emergent nature of cultural accumulation, which allows individuals to trade-off innovation and imitation. Building on the previously demonstrated ability for reinforcement learning agents to perform social learning, we find that training setups which balance this with independent learning give rise to cultural accumulation. These accumulating agents outperform those trained for a single lifetime with the same cumulative experience. We explore this accumulation by constructing two models under two distinct notions of a generation: episodic generations, in which accumulation occurs via in-context learning and train-time generations, in which accumulation occurs via in-weights learning. In-context and in-weights cultural accumulation can be interpreted as analogous to knowledge and skill accumulation, respectively. To the best of our knowledge, this work is the first to present general models that achieve emergent cultural accumulation in reinforcement learning, opening up new avenues towards more open-ended learning systems, as well as presenting new opportunities for modelling human culture.
Abstract:In RL, memory models such as RNNs and transformers address Partially Observable Markov Decision Processes (POMDPs) by mapping trajectories to latent Markov states. Neither model scales particularly well to long sequences, especially compared to an emerging class of memory models sometimes called linear recurrent models. We discover that the recurrent update of these models is a monoid, leading us to formally define a novel memory monoid framework. We revisit the traditional approach to batching in recurrent RL, highlighting both theoretical and empirical deficiencies. Leveraging the properties of memory monoids, we propose a new batching method that improves sample efficiency, increases the return, and simplifies the implementation of recurrent loss functions in RL.
Abstract:Learning in general-sum games often yields collectively sub-optimal results. Addressing this, opponent shaping (OS) methods actively guide the learning processes of other agents, empirically leading to improved individual and group performances in many settings. Early OS methods use higher-order derivatives to shape the learning of co-players, making them unsuitable for shaping multiple learning steps. Follow-up work, Model-free Opponent Shaping (M-FOS), addresses these by reframing the OS problem as a meta-game. In contrast to early OS methods, there is little theoretical understanding of the M-FOS framework. Providing theoretical guarantees for M-FOS is hard because A) there is little literature on theoretical sample complexity bounds for meta-reinforcement learning B) M-FOS operates in continuous state and action spaces, so theoretical analysis is challenging. In this work, we present R-FOS, a tabular version of M-FOS that is more suitable for theoretical analysis. R-FOS discretises the continuous meta-game MDP into a tabular MDP. Within this discretised MDP, we adapt the $R_{max}$ algorithm, most prominently used to derive PAC-bounds for MDPs, as the meta-learner in the R-FOS algorithm. We derive a sample complexity bound that is exponential in the cardinality of the inner state and action space and the number of agents. Our bound guarantees that, with high probability, the final policy learned by an R-FOS agent is close to the optimal policy, apart from a constant factor. Finally, we investigate how R-FOS's sample complexity scales in the size of state-action space. Our theoretical results on scaling are supported empirically in the Matching Pennies environment.
Abstract:Recent advancements in meta-learning have enabled the automatic discovery of novel reinforcement learning algorithms parameterized by surrogate objective functions. To improve upon manually designed algorithms, the parameterization of this learned objective function must be expressive enough to represent novel principles of learning (instead of merely recovering already established ones) while still generalizing to a wide range of settings outside of its meta-training distribution. However, existing methods focus on discovering objective functions that, like many widely used objective functions in reinforcement learning, do not take into account the total number of steps allowed for training, or "training horizon". In contrast, humans use a plethora of different learning objectives across the course of acquiring a new ability. For instance, students may alter their studying techniques based on the proximity to exam deadlines and their self-assessed capabilities. This paper contends that ignoring the optimization time horizon significantly restricts the expressive potential of discovered learning algorithms. We propose a simple augmentation to two existing objective discovery approaches that allows the discovered algorithm to dynamically update its objective function throughout the agent's training procedure, resulting in expressive schedules and increased generalization across different training horizons. In the process, we find that commonly used meta-gradient approaches fail to discover such adaptive objective functions while evolution strategies discover highly dynamic learning rules. We demonstrate the effectiveness of our approach on a wide range of tasks and analyze the resulting learned algorithms, which we find effectively balance exploration and exploitation by modifying the structure of their learning rules throughout the agent's lifetime.
Abstract:Policy Mirror Descent (PMD) is a popular framework in reinforcement learning, serving as a unifying perspective that encompasses numerous algorithms. These algorithms are derived through the selection of a mirror map and enjoy finite-time convergence guarantees. Despite its popularity, the exploration of PMD's full potential is limited, with the majority of research focusing on a particular mirror map -- namely, the negative entropy -- which gives rise to the renowned Natural Policy Gradient (NPG) method. It remains uncertain from existing theoretical studies whether the choice of mirror map significantly influences PMD's efficacy. In our work, we conduct empirical investigations to show that the conventional mirror map choice (NPG) often yields less-than-optimal outcomes across several standard benchmark environments. By applying a meta-learning approach, we identify more efficient mirror maps that enhance performance, both on average and in terms of best performance achieved along the training trajectory. We analyze the characteristics of these learned mirror maps and reveal shared traits among certain settings. Our results suggest that mirror maps have the potential to be adaptable across various environments, raising questions about how to best match a mirror map to an environment's structure and characteristics.
Abstract:Reinforcement learning solutions have great success in the 2-player general sum setting. In this setting, the paradigm of Opponent Shaping (OS), in which agents account for the learning of their co-players, has led to agents which are able to avoid collectively bad outcomes, whilst also maximizing their reward. These methods have currently been limited to 2-player game. However, the real world involves interactions with many more agents, with interactions on both local and global scales. In this paper, we extend Opponent Shaping (OS) methods to environments involving multiple co-players and multiple shaping agents. We evaluate on over 4 different environments, varying the number of players from 3 to 5, and demonstrate that model-based OS methods converge to equilibrium with better global welfare than naive learning. However, we find that when playing with a large number of co-players, OS methods' relative performance reduces, suggesting that in the limit OS methods may not perform well. Finally, we explore scenarios where more than one OS method is present, noticing that within games requiring a majority of cooperating agents, OS methods converge to outcomes with poor global welfare.
Abstract:In multi-agent settings with mixed incentives, methods developed for zero-sum games have been shown to lead to detrimental outcomes. To address this issue, opponent shaping (OS) methods explicitly learn to influence the learning dynamics of co-players and empirically lead to improved individual and collective outcomes. However, OS methods have only been evaluated in low-dimensional environments due to the challenges associated with estimating higher-order derivatives or scaling model-free meta-learning. Alternative methods that scale to more complex settings either converge to undesirable solutions or rely on unrealistic assumptions about the environment or co-players. In this paper, we successfully scale an OS-based approach to general-sum games with temporally-extended actions and long-time horizons for the first time. After analysing the representations of the meta-state and history used by previous algorithms, we propose a simplified version called Shaper. We show empirically that Shaper leads to improved individual and collective outcomes in a range of challenging settings from literature. We further formalize a technique previously implicit in the literature, and analyse its contribution to opponent shaping. We show empirically that this technique is helpful for the functioning of prior methods in certain environments. Lastly, we show that previous environments, such as the CoinGame, are inadequate for analysing temporally-extended general-sum interactions.
Abstract:Benchmarks play an important role in the development of machine learning algorithms. For example, research in reinforcement learning (RL) has been heavily influenced by available environments and benchmarks. However, RL environments are traditionally run on the CPU, limiting their scalability with typical academic compute. Recent advancements in JAX have enabled the wider use of hardware acceleration to overcome these computational hurdles, enabling massively parallel RL training pipelines and environments. This is particularly useful for multi-agent reinforcement learning (MARL) research. First of all, multiple agents must be considered at each environment step, adding computational burden, and secondly, the sample complexity is increased due to non-stationarity, decentralised partial observability, or other MARL challenges. In this paper, we present JaxMARL, the first open-source code base that combines ease-of-use with GPU enabled efficiency, and supports a large number of commonly used MARL environments as well as popular baseline algorithms. When considering wall clock time, our experiments show that per-run our JAX-based training pipeline is up to 12500x faster than existing approaches. This enables efficient and thorough evaluations, with the potential to alleviate the evaluation crisis of the field. We also introduce and benchmark SMAX, a vectorised, simplified version of the popular StarCraft Multi-Agent Challenge, which removes the need to run the StarCraft II game engine. This not only enables GPU acceleration, but also provides a more flexible MARL environment, unlocking the potential for self-play, meta-learning, and other future applications in MARL. We provide code at https://github.com/flairox/jaxmarl.
Abstract:The past decade has seen vast progress in deep reinforcement learning (RL) on the back of algorithms manually designed by human researchers. Recently, it has been shown that it is possible to meta-learn update rules, with the hope of discovering algorithms that can perform well on a wide range of RL tasks. Despite impressive initial results from algorithms such as Learned Policy Gradient (LPG), there remains a generalization gap when these algorithms are applied to unseen environments. In this work, we examine how characteristics of the meta-training distribution impact the generalization performance of these algorithms. Motivated by this analysis and building on ideas from Unsupervised Environment Design (UED), we propose a novel approach for automatically generating curricula to maximize the regret of a meta-learned optimizer, in addition to a novel approximation of regret, which we name algorithmic regret (AR). The result is our method, General RL Optimizers Obtained Via Environment Design (GROOVE). In a series of experiments, we show that GROOVE achieves superior generalization to LPG, and evaluate AR against baseline metrics from UED, identifying it as a critical component of environment design in this setting. We believe this approach is a step towards the discovery of truly general RL algorithms, capable of solving a wide range of real-world environments.