Get our free extension to see links to code for papers anywhere online!

Chrome logo  Add to Chrome

Firefox logo Add to Firefox

Generating High Fidelity Data from Low-density Regions using Diffusion Models


Mar 31, 2022
Vikash Sehwag, Caner Hazirbas, Albert Gordo, Firat Ozgenel, Cristian Canton Ferrer

* CVPR 2022 

   Access Paper or Ask Questions

  • Share via Twitter
  • Share via Facebook
  • Share via LinkedIn
  • Share via Whatsapp
  • Share via Messenger
  • Share via Email

Fairness Indicators for Systematic Assessments of Visual Feature Extractors


Feb 15, 2022
Priya Goyal, Adriana Romero Soriano, Caner Hazirbas, Levent Sagun, Nicolas Usunier


   Access Paper or Ask Questions

  • Share via Twitter
  • Share via Facebook
  • Share via LinkedIn
  • Share via Whatsapp
  • Share via Messenger
  • Share via Email

Towards Measuring Fairness in Speech Recognition: Casual Conversations Dataset Transcriptions


Nov 18, 2021
Chunxi Liu, Michael Picheny, Leda Sarı, Pooja Chitkara, Alex Xiao, Xiaohui Zhang, Mark Chou, Andres Alvarado, Caner Hazirbas, Yatharth Saraf

* Submitted to ICASSP 2022. Our dataset will be publicly available at (https://ai.facebook.com/datasets/casual-conversations-downloads) for general use. We also would like to note that considering the limitations of our dataset, we limit the use of it for only evaluation purposes (see license agreement) 

   Access Paper or Ask Questions

  • Share via Twitter
  • Share via Facebook
  • Share via LinkedIn
  • Share via Whatsapp
  • Share via Messenger
  • Share via Email

Localized Uncertainty Attacks


Jun 17, 2021
Ousmane Amadou Dia, Theofanis Karaletsos, Caner Hazirbas, Cristian Canton Ferrer, Ilknur Kaynar Kabul, Erik Meijer

* CVPR 2021 Workshop on Adversarial Machine Learning in Computer Vision 

   Access Paper or Ask Questions

  • Share via Twitter
  • Share via Facebook
  • Share via LinkedIn
  • Share via Whatsapp
  • Share via Messenger
  • Share via Email

Towards measuring fairness in AI: the Casual Conversations dataset


Apr 06, 2021
Caner Hazirbas, Joanna Bitton, Brian Dolhansky, Jacqueline Pan, Albert Gordo, Cristian Canton Ferrer


   Access Paper or Ask Questions

  • Share via Twitter
  • Share via Facebook
  • Share via LinkedIn
  • Share via Whatsapp
  • Share via Messenger
  • Share via Email

Deep Depth From Focus


Oct 28, 2018
Caner Hazirbas, Sebastian Georg Soyer, Maximilian Christian Staab, Laura Leal-Taixé, Daniel Cremers

* accepted to Asian Conference on Computer Vision (ACCV) 2018 

   Access Paper or Ask Questions

  • Share via Twitter
  • Share via Facebook
  • Share via LinkedIn
  • Share via Whatsapp
  • Share via Messenger
  • Share via Email

What Makes Good Synthetic Training Data for Learning Disparity and Optical Flow Estimation?


Mar 22, 2018
Nikolaus Mayer, Eddy Ilg, Philipp Fischer, Caner Hazirbas, Daniel Cremers, Alexey Dosovitskiy, Thomas Brox

* added references (UCL dataset); added IJCV copyright information 

   Access Paper or Ask Questions

  • Share via Twitter
  • Share via Facebook
  • Share via LinkedIn
  • Share via Whatsapp
  • Share via Messenger
  • Share via Email

Learning Proximal Operators: Using Denoising Networks for Regularizing Inverse Imaging Problems


Aug 30, 2017
Tim Meinhardt, Michael Moeller, Caner Hazirbas, Daniel Cremers


   Access Paper or Ask Questions

  • Share via Twitter
  • Share via Facebook
  • Share via LinkedIn
  • Share via Whatsapp
  • Share via Messenger
  • Share via Email

Image-based localization using LSTMs for structured feature correlation


Aug 20, 2017
Florian Walch, Caner Hazirbas, Laura Leal-Taixé, Torsten Sattler, Sebastian Hilsenbeck, Daniel Cremers


   Access Paper or Ask Questions

  • Share via Twitter
  • Share via Facebook
  • Share via LinkedIn
  • Share via Whatsapp
  • Share via Messenger
  • Share via Email