Abstract:Survival analysis aims at modeling the relationship between covariates and event occurrence with some untracked (censored) samples. In implementation, existing methods model the survival distribution with strong assumptions or in a discrete time space for likelihood estimation with censorship, which leads to weak generalization. In this paper, we propose Implicit Survival Function (ISF) based on Implicit Neural Representation for survival distribution estimation without strong assumptions,and employ numerical integration to approximate the cumulative distribution function for prediction and optimization. Experimental results show that ISF outperforms the state-of-the-art methods in three public datasets and has robustness to the hyperparameter controlling estimation precision.
Abstract:In recent years, many convolutional neural network-based models are designed for JPEG artifacts reduction, and have achieved notable progress. However, few methods are suitable for extreme low-bitrate image compression artifacts reduction. The main challenge is that the highly compressed image loses too much information, resulting in reconstructing high-quality image difficultly. To address this issue, we propose a multimodal fusion learning method for text-guided JPEG artifacts reduction, in which the corresponding text description not only provides the potential prior information of the highly compressed image, but also serves as supplementary information to assist in image deblocking. We fuse image features and text semantic features from the global and local perspectives respectively, and design a contrastive loss built upon contrastive learning to produce visually pleasing results. Extensive experiments, including a user study, prove that our method can obtain better deblocking results compared to the state-of-the-art methods.
Abstract:Image-based single-modality compression learning approaches have demonstrated exceptionally powerful encoding and decoding capabilities in the past few years , but suffer from blur and severe semantics loss at extremely low bitrates. To address this issue, we propose a multimodal machine learning method for text-guided image compression, in which the semantic information of text is used as prior information to guide image compression for better compression performance. We fully study the role of text description in different components of the codec, and demonstrate its effectiveness. In addition, we adopt the image-text attention module and image-request complement module to better fuse image and text features, and propose an improved multimodal semantic-consistent loss to produce semantically complete reconstructions. Extensive experiments, including a user study, prove that our method can obtain visually pleasing results at extremely low bitrates, and achieves a comparable or even better performance than state-of-the-art methods, even though these methods are at 2x to 4x bitrates of ours.
Abstract:Abnormal event detection, which refers to mining unusual interactions among involved entities, plays an important role in many real applications. Previous works mostly over-simplify this task as detecting abnormal pair-wise interactions. However, real-world events may contain multi-typed attributed entities and complex interactions among them, which forms an Attributed Heterogeneous Information Network (AHIN). With the boom of social networks, abnormal event detection in AHIN has become an important, but seldom explored task. In this paper, we firstly study the unsupervised abnormal event detection problem in AHIN. The events are considered as star-schema instances of AHIN and are further modeled by hypergraphs. A novel hypergraph contrastive learning method, named AEHCL, is proposed to fully capture abnormal event patterns. AEHCL designs the intra-event and inter-event contrastive modules to exploit self-supervised AHIN information. The intra-event contrastive module captures the pair-wise and multivariate interaction anomalies within an event, and the inter-event module captures the contextual anomalies among events. These two modules collaboratively boost the performance of each other and improve the detection results. During the testing phase, a contrastive learning-based abnormal event score function is further proposed to measure the abnormality degree of events. Extensive experiments on three datasets in different scenarios demonstrate the effectiveness of AEHCL, and the results improve state-of-the-art baselines up to 12.0% in Average Precision (AP) and 4.6% in Area Under Curve (AUC) respectively.
Abstract:The explosive growth of cyber attacks nowadays, such as malware, spam, and intrusions, caused severe consequences on society. Securing cyberspace has become an utmost concern for organizations and governments. Traditional Machine Learning (ML) based methods are extensively used in detecting cyber threats, but they hardly model the correlations between real-world cyber entities. In recent years, with the proliferation of graph mining techniques, many researchers investigated these techniques for capturing correlations between cyber entities and achieving high performance. It is imperative to summarize existing graph-based cybersecurity solutions to provide a guide for future studies. Therefore, as a key contribution of this paper, we provide a comprehensive review of graph mining for cybersecurity, including an overview of cybersecurity tasks, the typical graph mining techniques, and the general process of applying them to cybersecurity, as well as various solutions for different cybersecurity tasks. For each task, we probe into relevant methods and highlight the graph types, graph approaches, and task levels in their modeling. Furthermore, we collect open datasets and toolkits for graph-based cybersecurity. Finally, we outlook the potential directions of this field for future research.
Abstract:Instance segmentation is applied widely in image editing, image analysis and autonomous driving, etc. However, insufficient data is a common problem in practical applications. The Visual Inductive Priors(VIPriors) Instance Segmentation Challenge has focused on this problem. VIPriors for Data-Efficient Computer Vision Challenges ask competitors to train models from scratch in a data-deficient setting, but there are some visual inductive priors that can be used. In order to address the VIPriors instance segmentation problem, we designed a Task-Specific Data Augmentation(TS-DA) strategy and Inference Processing(TS-IP) strategy. The main purpose of task-specific data augmentation strategy is to tackle the data-deficient problem. And in order to make the most of visual inductive priors, we designed a task-specific inference processing strategy. We demonstrate the applicability of proposed method on VIPriors Instance Segmentation Challenge. The segmentation model applied is Hybrid Task Cascade based detector on the Swin-Base based CBNetV2 backbone. Experimental results demonstrate that proposed method can achieve a competitive result on the test set of 2022 VIPriors Instance Segmentation Challenge, with 0.531 AP@0.50:0.95.
Abstract:The goal of ACM MMSports2022 DeepSportRadar Instance Segmentation Challenge is to tackle the segmentation of individual humans including players, coaches and referees on a basketball court. And the main characteristics of this challenge are there is a high level of occlusions between players and the amount of data is quite limited. In order to address these problems, we designed a strong instance segmentation pipeline. Firstly, we employed a proper data augmentation strategy for this task mainly including photometric distortion transform and copy-paste strategy, which can generate more image instances with a wider distribution. Secondly, we employed a strong segmentation model, Hybrid Task Cascade based detector on the Swin-Base based CBNetV2 backbone, and we add MaskIoU head to HTCMaskHead that can simply and effectively improve the performance of instance segmentation. Finally, the SWA training strategy was applied to improve the performance further. Experimental results demonstrate the proposed pipeline can achieve a competitive result on the DeepSportRadar challenge, with 0.768AP@0.50:0.95 on the challenge set. Source code is available at https://github.com/YJingyu/Instanc_Segmentation_Pro.
Abstract:Recent multi-view multimedia applications struggle between high-resolution (HR) visual experience and storage or bandwidth constraints. Therefore, this paper proposes a Multi-View Image Super-Resolution (MVISR) task. It aims to increase the resolution of multi-view images captured from the same scene. One solution is to apply image or video super-resolution (SR) methods to reconstruct HR results from the low-resolution (LR) input view. However, these methods cannot handle large-angle transformations between views and leverage information in all multi-view images. To address these problems, we propose the MVSRnet, which uses geometry information to extract sharp details from all LR multi-view to support the SR of the LR input view. Specifically, the proposed Geometry-Aware Reference Synthesis module in MVSRnet uses geometry information and all multi-view LR images to synthesize pixel-aligned HR reference images. Then, the proposed Dynamic High-Frequency Search network fully exploits the high-frequency textural details in reference images for SR. Extensive experiments on several benchmarks show that our method significantly improves over the state-of-the-art approaches.
Abstract:Under stereo settings, the performance of image JPEG artifacts removal can be further improved by exploiting the additional information provided by a second view. However, incorporating this information for stereo image JPEG artifacts removal is a huge challenge, since the existing compression artifacts make pixel-level view alignment difficult. In this paper, we propose a novel parallax transformer network (PTNet) to integrate the information from stereo image pairs for stereo image JPEG artifacts removal. Specifically, a well-designed symmetric bi-directional parallax transformer module is proposed to match features with similar textures between different views instead of pixel-level view alignment. Due to the issues of occlusions and boundaries, a confidence-based cross-view fusion module is proposed to achieve better feature fusion for both views, where the cross-view features are weighted with confidence maps. Especially, we adopt a coarse-to-fine design for the cross-view interaction, leading to better performance. Comprehensive experimental results demonstrate that our PTNet can effectively remove compression artifacts and achieves superior performance than other testing state-of-the-art methods.
Abstract:Recent studies of deep learning based stereo image super-resolution (StereoSR) have promoted the development of StereoSR. However, existing StereoSR models mainly concentrate on improving quantitative evaluation metrics and neglect the visual quality of super-resolved stereo images. To improve the perceptual performance, this paper proposes the first perception-oriented stereo image super-resolution approach by exploiting the feedback, provided by the evaluation on the perceptual quality of StereoSR results. To provide accurate guidance for the StereoSR model, we develop the first special stereo image super-resolution quality assessment (StereoSRQA) model, and further construct a StereoSRQA database. Extensive experiments demonstrate that our StereoSR approach significantly improves the perceptual quality and enhances the reliability of stereo images for disparity estimation.