Abstract:In this work, we take a first step toward elucidating the mechanisms behind emergent exploration in unsupervised reinforcement learning. We study Single-Goal Contrastive Reinforcement Learning (SGCRL), a self-supervised algorithm capable of solving challenging long-horizon goal-reaching tasks without external rewards or curricula. We combine theoretical analysis of the algorithm's objective function with controlled experiments to understand what drives its exploration. We show that SGCRL maximizes implicit rewards shaped by its learned representations. These representations automatically modify the reward landscape to promote exploration before reaching the goal and exploitation thereafter. Our experiments also demonstrate that these exploration dynamics arise from learning low-rank representations of the state space rather than from neural network function approximation. Our improved understanding enables us to adapt SGCRL to perform safety-aware exploration.




Abstract:In this paper, we present empirical evidence of skills and directed exploration emerging from a simple RL algorithm long before any successful trials are observed. For example, in a manipulation task, the agent is given a single observation of the goal state and learns skills, first for moving its end-effector, then for pushing the block, and finally for picking up and placing the block. These skills emerge before the agent has ever successfully placed the block at the goal location and without the aid of any reward functions, demonstrations, or manually-specified distance metrics. Once the agent has learned to reach the goal state reliably, exploration is reduced. Implementing our method involves a simple modification of prior work and does not require density estimates, ensembles, or any additional hyperparameters. Intuitively, the proposed method seems like it should be terrible at exploration, and we lack a clear theoretical understanding of why it works so effectively, though our experiments provide some hints.