Get our free extension to see links to code for papers anywhere online!

Chrome logo  Add to Chrome

Firefox logo Add to Firefox

Open-Source Skull Reconstruction with MONAI


Nov 25, 2022
Jianning Li, André Ferreira, Behrus Puladi, Victor Alves, Michael Kamp, Moon-Sung Kim, Felix Nensa, Jens Kleesiek, Seyed-Ahmad Ahmadi, Jan Egger

Add code


   Access Paper or Ask Questions

  • Share via Twitter
  • Share via Facebook
  • Share via LinkedIn
  • Share via Whatsapp
  • Share via Messenger
  • Share via Email

Training β-VAE by Aggregating a Learned Gaussian Posterior with a Decoupled Decoder


Sep 29, 2022
Jianning Li, Jana Fragemann, Seyed-Ahmad Ahmadi, Jens Kleesiek, Jan Egger

Add code


   Access Paper or Ask Questions

  • Share via Twitter
  • Share via Facebook
  • Share via LinkedIn
  • Share via Whatsapp
  • Share via Messenger
  • Share via Email

Graph-in-Graph (GiG): Learning interpretable latent graphs in non-Euclidean domain for biological and healthcare applications


Apr 01, 2022
Kamilia Mullakaeva, Luca Cosmo, Anees Kazi, Seyed-Ahmad Ahmadi, Nassir Navab, Michael M. Bronstein

Add code


   Access Paper or Ask Questions

  • Share via Twitter
  • Share via Facebook
  • Share via LinkedIn
  • Share via Whatsapp
  • Share via Messenger
  • Share via Email

Simultaneous imputation and disease classification in incomplete medical datasets using Multigraph Geometric Matrix Completion (MGMC)


May 14, 2020
Gerome Vivar, Anees Kazi, Hendrik Burwinkel, Andreas Zwergal, Nassir Navab, Seyed-Ahmad Ahmadi

Add code


   Access Paper or Ask Questions

  • Share via Twitter
  • Share via Facebook
  • Share via LinkedIn
  • Share via Whatsapp
  • Share via Messenger
  • Share via Email

Domain-specific loss design for unsupervised physical training: A new approach to modeling medical ML solutions


May 09, 2020
Hendrik Burwinkel, Holger Matz, Stefan Saur, Christoph Hauger, Ayse Mine Evren, Nino Hirnschall, Oliver Findl, Nassir Navab, Seyed-Ahmad Ahmadi

Add code

* 11 pages, 2 figures 

   Access Paper or Ask Questions

  • Share via Twitter
  • Share via Facebook
  • Share via LinkedIn
  • Share via Whatsapp
  • Share via Messenger
  • Share via Email

Decision Support for Intoxication Prediction Using Graph Convolutional Networks


May 02, 2020
Hendrik Burwinkel, Matthias Keicher, David Bani-Harouni, Tobias Zellner, Florian Eyer, Nassir Navab, Seyed-Ahmad Ahmadi

Add code

* 10 pages, 3 figures 

   Access Paper or Ask Questions

  • Share via Twitter
  • Share via Facebook
  • Share via LinkedIn
  • Share via Whatsapp
  • Share via Messenger
  • Share via Email

Peri-Diagnostic Decision Support Through Cost-Efficient Feature Acquisition at Test-Time


Mar 31, 2020
Gerome Vivar, Kamilia Mullakaeva, Andreas Zwergal, Nassir Navab, Seyed-Ahmad Ahmadi

Add code


   Access Paper or Ask Questions

  • Share via Twitter
  • Share via Facebook
  • Share via LinkedIn
  • Share via Whatsapp
  • Share via Messenger
  • Share via Email

Latent Patient Network Learning for Automatic Diagnosis


Mar 27, 2020
Luca Cosmo, Anees Kazi, Seyed-Ahmad Ahmadi, Nassir Navab, Michael Bronstein

Add code


   Access Paper or Ask Questions

  • Share via Twitter
  • Share via Facebook
  • Share via LinkedIn
  • Share via Whatsapp
  • Share via Messenger
  • Share via Email

Multi-modal Graph Fusion for Inductive Disease Classification in Incomplete Datasets


May 08, 2019
Gerome Vivar, Hendrik Burwinkel, Anees Kazi, Andreas Zwergal, Nassir Navab, Seyed-Ahmad Ahmadi

Add code

* 9 pages, 3 figures 

   Access Paper or Ask Questions

  • Share via Twitter
  • Share via Facebook
  • Share via LinkedIn
  • Share via Whatsapp
  • Share via Messenger
  • Share via Email

Adaptive image-feature learning for disease classification using inductive graph networks


May 08, 2019
Hendrik Burwinkel, Anees Kazi, Gerome Vivar, Shadi Albarqouni, Guillaume Zahnd, Nassir Navab, Seyed-Ahmad Ahmadi

Add code

* 9 pages, 2 figures 

   Access Paper or Ask Questions

  • Share via Twitter
  • Share via Facebook
  • Share via LinkedIn
  • Share via Whatsapp
  • Share via Messenger
  • Share via Email
1
2
>>