Abstract:This study analyzes semantic segmentation performance across heterogeneously labeled point-cloud datasets relevant to public safety applications, including pre-incident planning systems derived from lidar scans. Using NIST's Point Cloud City dataset (Enfield and Memphis collections), we investigate challenges in unifying differently labeled 3D data. Our methodology employs a graded schema with the KPConv architecture, evaluating performance through IoU metrics on safety-relevant features. Results indicate performance variability: geometrically large objects (e.g. stairs, windows) achieve higher segmentation performance, suggesting potential for navigational context, while smaller safety-critical features exhibit lower recognition rates. Performance is impacted by class imbalance and the limited geometric distinction of smaller objects in typical lidar scans, indicating limitations in detecting certain safety-relevant features using current point-cloud methods. Key identified challenges include insufficient labeled data, difficulties in unifying class labels across datasets, and the need for standardization. Potential directions include automated labeling and multi-dataset learning strategies. We conclude that reliable point-cloud semantic segmentation for public safety necessitates standardized annotation protocols and improved labeling techniques to address data heterogeneity and the detection of small, safety-critical elements.
Abstract:This paper presents an appendix to the original NeBula autonomy solution developed by the TEAM CoSTAR (Collaborative SubTerranean Autonomous Robots), participating in the DARPA Subterranean Challenge. Specifically, this paper presents extensions to NeBula's hardware, software, and algorithmic components that focus on increasing the range and scale of the exploration environment. From the algorithmic perspective, we discuss the following extensions to the original NeBula framework: (i) large-scale geometric and semantic environment mapping; (ii) an adaptive positioning system; (iii) probabilistic traversability analysis and local planning; (iv) large-scale POMDP-based global motion planning and exploration behavior; (v) large-scale networking and decentralized reasoning; (vi) communication-aware mission planning; and (vii) multi-modal ground-aerial exploration solutions. We demonstrate the application and deployment of the presented systems and solutions in various large-scale underground environments, including limestone mine exploration scenarios as well as deployment in the DARPA Subterranean challenge.