Abstract:Accurate localization of mobile terminals is a pivotal aspect of integrated sensing and communication systems. Traditional fingerprint-based localization methods, which infer coordinates from channel information within pre-set rectangular areas, often face challenges due to the heterogeneous distribution of fingerprints inherent in non-line-of-sight (NLOS) scenarios, particularly within orthogonal frequency division multiplexing systems. To overcome this limitation, we develop a novel multi-sources information fusion learning framework referred to as the Autosync Multi-Domains NLOS Localization (AMDNLoc). Specifically, AMDNLoc employs a two-stage matched filter fused with a target tracking algorithm and iterative centroid-based clustering to automatically and irregularly segment NLOS regions, ensuring uniform distribution within channel state information across frequency, power, and time-delay domains. Additionally, the framework utilizes a segment-specific linear classifier array, coupled with deep residual network-based feature extraction and fusion, to establish the correlation function between fingerprint features and coordinates within these regions. Simulation results reveal that AMDNLoc achieves an impressive NLOS localization accuracy of 1.46 meters on typical wireless artificial intelligence research datasets and demonstrates significant improvements in interpretability, adaptability, and scalability.
Abstract:In millimeter-wave communications, large-scale antenna arrays are commonly employed to mitigate obstacle occlusion and path loss. However, these large-scale arrays generate pencil-shaped beams, which necessitate a higher number of training beams to cover the desired space. This results in the heavy beam training overhead. Furthermore, as the antenna aperture increases, users are more likely to be situated in the near-field region of the base station (BS) antenna array. This motivates our investigation into the beam training problem in the near-field region to achieve efficient beam alignment. To address the high complexity and low identification accuracy of existing beam training techniques, we propose an efficient hashing multi-arm beam (HMB) training scheme for the near-field scenario. Specifically, we first design a set of sparse bases based on the polar domain sparsity of the near-field channel and construct a near-field single-beam training codebook. Then, the hash functions are chosen to construct the near-field multi-arm beam training codebook. Each multi-arm beam training codeword is used in a time slot until the predefined codebook is traversed. Finally, the soft decision and voting methods are applied to distinguish the signal from different BS and obtain the correctly aligned beams. In addition, we provide the logically rigorous proof of computational complexity. Simulation results show that our proposed near-field HMB training method can achieve 96.4% identification accuracy of the exhaustive beam training method and greatly reduce the training overhead to the logarithmic level. Furthermore, we verify its applicability under the far-field scenario as well.
Abstract:The emerging concept of extremely-large holographic multiple-input multiple-output (HMIMO), beneficial from compactly and densely packed cost-efficient radiating meta-atoms, has been demonstrated for enhanced degrees of freedom even in pure line-of-sight conditions, enabling tremendous multiplexing gain for the next-generation communication systems. Most of the reported works focus on energy and spectrum efficiency, path loss analyses, and channel modeling. The extension to secure communications remains unexplored. In this paper, we theoretically characterize the secrecy capacity of the HMIMO network with multiple legitimate users and one eavesdropper while taking into consideration artificial noise and max-min fairness. We formulate the power allocation (PA) problem and address it by following successive convex approximation and Taylor expansion. We further study the effect of fixed PA coefficients, imperfect channel state information, inter-element spacing, and the number of Eve's antennas on the sum secrecy rate. Simulation results show that significant performance gain with more than 100\% increment in the high signal-to-noise ratio (SNR) regime for the two-user case is obtained by exploiting adaptive/flexible PA compared to the case with fixed PA coefficients.