Abstract:We study the self-normalized concentration of vector-valued stochastic processes. We focus on bounds for sub-$\psi$ processes, a tail condition that encompasses a wide variety of well-known distributions (including sub-exponential, sub-Gaussian, sub-gamma, and sub-Poisson distributions). Our results recover and generalize the influential bound of Abbasi-Yadkori et al. (2011) and fill a gap in the literature between determinant-based bounds and those based on condition numbers. As applications we prove a Bernstein inequality for random vectors satisfying a moment condition (which is more general than boundedness), and also provide the first dimension-free, self-normalized empirical Bernstein inequality. Our techniques are based on the variational (PAC-Bayes) approach to concentration.
Abstract:Private Evolution (PE) is a promising training-free method for differentially private (DP) synthetic data generation. While it achieves strong performance in some domains (e.g., images and text), its behavior in others (e.g., tabular data) is less consistent. To date, the only theoretical analysis of the convergence of PE depends on unrealistic assumptions about both the algorithm's behavior and the structure of the sensitive dataset. In this work, we develop a new theoretical framework to explain PE's practical behavior and identify sufficient conditions for its convergence. For $d$-dimensional sensitive datasets with $n$ data points from a bounded domain, we prove that PE produces an $(\epsilon, \delta)$-DP synthetic dataset with expected 1-Wasserstein distance of order $\tilde{O}(d(n\epsilon)^{-1/d})$ from the original, establishing worst-case convergence of the algorithm as $n \to \infty$. Our analysis extends to general Banach spaces as well. We also connect PE to the Private Signed Measure Mechanism, a method for DP synthetic data generation that has thus far not seen much practical adoption. We demonstrate the practical relevance of our theoretical findings in simulations.
Abstract:Changepoint localization is the problem of estimating the index at which a change occurred in the data generating distribution of an ordered list of data, or declaring that no change occurred. We present the broadly applicable CONCH (CONformal CHangepoint localization) algorithm, which uses a matrix of conformal p-values to produce a confidence interval for a (single) changepoint under the mild assumption that the pre-change and post-change distributions are each exchangeable. We exemplify the CONCH algorithm on a variety of synthetic and real-world datasets, including using black-box pre-trained classifiers to detect changes in sequences of images or text.
Abstract:Identifying relationships among stochastic processes is a key goal in disciplines that deal with complex temporal systems, such as economics. While the standard toolkit for multivariate time series analysis has many advantages, it can be difficult to capture nonlinear dynamics using linear vector autoregressive models. This difficulty has motivated the development of methods for variable selection, causal discovery, and graphical modeling for nonlinear time series, which routinely employ nonparametric tests for conditional independence. In this paper, we introduce the first framework for conditional independence testing that works with a single realization of a nonstationary nonlinear process. The key technical ingredients are time-varying nonlinear regression, time-varying covariance estimation, and a distribution-uniform strong Gaussian approximation.
Abstract:We prove two lower bounds for stopping times of sequential tests between general composite nulls and alternatives. The first lower bound is for the setting where the type-1 error level $\alpha$ approaches zero, and equals $\log(1/\alpha)$ divided by a certain infimum KL divergence, termed $\operatorname{KL_{inf}}$. The second lower bound applies to the setting where $\alpha$ is fixed and $\operatorname{KL_{inf}}$ approaches 0 (meaning that the null and alternative sets are not separated) and equals $c \operatorname{KL_{inf}}^{-1} \log \log \operatorname{KL_{inf}}^{-1}$ for a universal constant $c > 0$. We also provide a sufficient condition for matching the upper bounds and show that this condition is met in several special cases. Given past work, these upper and lower bounds are unsurprising in their form; our main contribution is the generality in which they hold, for example, not requiring reference measures or compactness of the classes.
Abstract:We revisit the discrete argmin inference problem in high-dimensional settings. Given $n$ observations from a $d$ dimensional vector, the goal is to test whether the $r$th component of the mean vector is the smallest among all components. We propose dimension-agnostic tests that maintain validity regardless of how $d$ scales with $n$, and regardless of arbitrary ties in the mean vector. Notably, our validity holds under mild moment conditions, requiring little more than finiteness of a second moment, and permitting possibly strong dependence between coordinates. In addition, we establish the local minimax separation rate for this problem, which adapts to the cardinality of a confusion set, and show that the proposed tests attain this rate. Our method uses the sample splitting and self-normalization approach of Kim and Ramdas (2024). Our tests can be easily inverted to yield confidence sets for the argmin index. Empirical results illustrate the strong performance of our approach in terms of type I error control and power compared to existing methods.
Abstract:In online selective conformal inference, data arrives sequentially, and prediction intervals are constructed only when an online selection rule is met. Since online selections may break the exchangeability between the selected test datum and the rest of the data, one must correct for this by suitably selecting the calibration data. In this paper, we evaluate existing calibration selection strategies and pinpoint some fundamental errors in the associated claims that guarantee selection-conditional coverage and control of the false coverage rate (FCR). To address these shortcomings, we propose novel calibration selection strategies that provably preserve the exchangeability of the calibration data and the selected test datum. Consequently, we demonstrate that online selective conformal inference with these strategies guarantees both selection-conditional coverage and FCR control. Our theoretical findings are supported by experimental evidence examining tradeoffs between valid methods.
Abstract:Vovk (2015) introduced cross-conformal prediction, a modification of split conformal designed to improve the width of prediction sets. The method, when trained with a miscoverage rate equal to $\alpha$ and $n \gg K$, ensures a marginal coverage of at least $1 - 2\alpha - 2(1-\alpha)(K-1)/(n+K)$, where $n$ is the number of observations and $K$ denotes the number of folds. A simple modification of the method achieves coverage of at least $1-2\alpha$. In this work, we propose new variants of both methods that yield smaller prediction sets without compromising the latter theoretical guarantee. The proposed methods are based on recent results deriving more statistically efficient combination of p-values that leverage exchangeability and randomization. Simulations confirm the theoretical findings and bring out some important tradeoffs.
Abstract:This paper addresses a fundamental but largely unexplored challenge in sequential changepoint analysis: conducting inference following a detected change. We study the problem of localizing the changepoint using only the data observed up to a data-dependent stopping time at which a sequential detection algorithm $\mathcal A$ declares a change. We first construct confidence sets for the unknown changepoint when pre- and post-change distributions are assumed to be known. We then extend our framework to composite pre- and post-change scenarios. We impose no conditions on the observation space or on $\mathcal A$ -- we only need to be able to run $\mathcal A$ on simulated data sequences. In summary, this work offers both theoretically sound and practically effective tools for sequential changepoint localization.
Abstract:Estimation and inference for the Average Treatment Effect (ATE) is a cornerstone of causal inference and often serves as the foundation for developing procedures for more complicated settings. Although traditionally analyzed in a batch setting, recent advances in martingale theory have paved the way for adaptive methods that can enhance the power of downstream inference. Despite these advances, progress in understanding and developing adaptive algorithms remains in its early stages. Existing work either focus on asymptotic analyses that overlook exploration-exploitation tradeoffs relevant in finite-sample regimes or rely on simpler but suboptimal estimators. In this work, we address these limitations by studying adaptive sampling procedures that take advantage of the asymptotically optimal Augmented Inverse Probability Weighting (AIPW) estimator. Our analysis uncovers challenges obscured by asymptotic approaches and introduces a novel algorithmic design principle reminiscent of optimism in multiarmed bandits. This principled approach enables our algorithm to achieve significant theoretical and empirical gains compared to prior methods. Our findings mark a step forward in advancing adaptive causal inference methods in theory and practice.