Get our free extension to see links to code for papers anywhere online!Free add-on: code for papers everywhere!Free add-on: See code for papers anywhere!

Abstract:Conformal prediction equips machine learning models with a reasonable notion of uncertainty quantification without making strong distributional assumptions. It wraps around any black-box prediction model and converts point predictions into set predictions that have a predefined marginal coverage guarantee. However, conformal prediction only works if we fix the underlying machine learning model in advance. A relatively unaddressed issue in conformal prediction is that of model selection and/or aggregation: for a given problem, which of the plethora of prediction methods (random forests, neural nets, regularized linear models, etc.) should we conformalize? This paper proposes a new approach towards conformal model aggregation in online settings that is based on combining the prediction sets from several algorithms by voting, where weights on the models are adapted over time based on past performance.

Via

Abstract:In anytime-valid sequential inference, it is known that any admissible inference procedure must be based on test martingales and their composite generalization, called e-processes, which are nonnegative processes whose expectation at any arbitrary stopping time is upper-bounded by one. An e-process quantifies the accumulated evidence against a composite null hypothesis over a sequence of outcomes. This paper studies methods for combining e-processes that are computed using different information sets, i.e., filtrations, for a null hypothesis. Even though e-processes constructed on the same filtration can be combined effortlessly (e.g., by averaging), e-processes constructed on different filtrations cannot be combined as easily because their validity in a coarser filtration does not translate to validity in a finer filtration. We discuss three concrete examples of such e-processes in the literature: exchangeability tests, independence tests, and tests for evaluating and comparing forecasts with lags. Our main result establishes that these e-processes can be lifted into any finer filtration using adjusters, which are functions that allow betting on the running maximum of the accumulated wealth (thereby insuring against the loss of evidence). We also develop randomized adjusters that can improve the power of the resulting sequential inference procedure.

Via

Figures and Tables:

Abstract:We present new concentration inequalities for either martingale dependent or exchangeable random symmetric matrices under a variety of tail conditions, encompassing standard Chernoff bounds to self-normalized heavy-tailed settings. These inequalities are often randomized in a way that renders them strictly tighter than existing deterministic results in the literature, are typically expressed in the Loewner order, and are sometimes valid at arbitrary data-dependent stopping times. Along the way, we explore the theory of matrix supermartingales and maximal inequalities, potentially of independent interest.

Via

Abstract:We consider the problem of efficient inference of the Average Treatment Effect in a sequential experiment where the policy governing the assignment of subjects to treatment or control can change over time. We first provide a central limit theorem for the Adaptive Augmented Inverse-Probability Weighted estimator, which is semiparametric efficient, under weaker assumptions than those previously made in the literature. This central limit theorem enables efficient inference at fixed sample sizes. We then consider a sequential inference setting, deriving both asymptotic and nonasymptotic confidence sequences that are considerably tighter than previous methods. These anytime-valid methods enable inference under data-dependent stopping times (sample sizes). Additionally, we use propensity score truncation techniques from the recent off-policy estimation literature to reduce the finite sample variance of our estimator without affecting the asymptotic variance. Empirical results demonstrate that our methods yield narrower confidence sequences than those previously developed in the literature while maintaining time-uniform error control.

Via

Abstract:We derive and study time-uniform confidence spheres - termed confidence sphere sequences (CSSs) - which contain the mean of random vectors with high probability simultaneously across all sample sizes. Inspired by the original work of Catoni and Giulini, we unify and extend their analysis to cover both the sequential setting and to handle a variety of distributional assumptions. More concretely, our results include an empirical-Bernstein CSS for bounded random vectors (resulting in a novel empirical-Bernstein confidence interval), a CSS for sub-$\psi$ random vectors, and a CSS for heavy-tailed random vectors based on a sequentially valid Catoni-Giulini estimator. Finally, we provide a version of our empirical-Bernstein CSS that is robust to contamination by Huber noise.

Via

Figures and Tables:

Abstract:A scientist tests a continuous stream of hypotheses over time in the course of her investigation -- she does not test a predetermined, fixed number of hypotheses. The scientist wishes to make as many discoveries as possible while ensuring the number of false discoveries is controlled -- a well recognized way for accomplishing this is to control the false discovery rate (FDR). Prior methods for FDR control in the online setting have focused on formulating algorithms when specific dependency structures are assumed to exist between the test statistics of each hypothesis. However, in practice, these dependencies often cannot be known beforehand or tested after the fact. Our algorithm, e-LOND, provides FDR control under arbitrary, possibly unknown, dependence. We show that our method is more powerful than existing approaches to this problem through simulations. We also formulate extensions of this algorithm to utilize randomization for increased power, and for constructing confidence intervals in online selective inference.

Via

Abstract:We propose a general framework for constructing powerful, sequential hypothesis tests for a large class of nonparametric testing problems. The null hypothesis for these problems is defined in an abstract form using the action of two known operators on the data distribution. This abstraction allows for a unified treatment of several classical tasks, such as two-sample testing, independence testing, and conditional-independence testing, as well as modern problems, such as testing for adversarial robustness of machine learning (ML) models. Our proposed framework has the following advantages over classical batch tests: 1) it continuously monitors online data streams and efficiently aggregates evidence against the null, 2) it provides tight control over the type I error without the need for multiple testing correction, 3) it adapts the sample size requirement to the unknown hardness of the problem. We develop a principled approach of leveraging the representation capability of ML models within the testing-by-betting framework, a game-theoretic approach for designing sequential tests. Empirical results on synthetic and real-world datasets demonstrate that tests instantiated using our general framework are competitive against specialized baselines on several tasks.

Via

Abstract:In 1976, Lai constructed a nontrivial confidence sequence for the mean $\mu$ of a Gaussian distribution with unknown variance $\sigma$. Curiously, he employed both an improper (right Haar) mixture over $\sigma$ and an improper (flat) mixture over $\mu$. Here, we elaborate carefully on the details of his construction, which use generalized nonintegrable martingales and an extended Ville's inequality. While this does yield a sequential t-test, it does not yield an ``e-process'' (due to the nonintegrability of his martingale). In this paper, we develop two new e-processes and confidence sequences for the same setting: one is a test martingale in a reduced filtration, while the other is an e-process in the canonical data filtration. These are respectively obtained by swapping Lai's flat mixture for a Gaussian mixture, and swapping the right Haar mixture over $\sigma$ with the maximum likelihood estimate under the null, as done in universal inference. We also analyze the width of resulting confidence sequences, which have a curious dependence on the error probability $\alpha$. Numerical experiments are provided along the way to compare and contrast the various approaches.

Via

Abstract:Constructing nonasymptotic confidence intervals (CIs) for the mean of a univariate distribution from independent and identically distributed (i.i.d.) observations is a fundamental task in statistics. For bounded observations, a classical nonparametric approach proceeds by inverting standard concentration bounds, such as Hoeffding's or Bernstein's inequalities. Recently, an alternative betting-based approach for defining CIs and their time-uniform variants called confidence sequences (CSs), has been shown to be empirically superior to the classical methods. In this paper, we provide theoretical justification for this improved empirical performance of betting CIs and CSs. Our main contributions are as follows: (i) We first compare CIs using the values of their first-order asymptotic widths (scaled by $\sqrt{n}$), and show that the betting CI of Waudby-Smith and Ramdas (2023) has a smaller limiting width than existing empirical Bernstein (EB)-CIs. (ii) Next, we establish two lower bounds that characterize the minimum width achievable by any method for constructing CIs/CSs in terms of certain inverse information projections. (iii) Finally, we show that the betting CI and CS match the fundamental limits, modulo an additive logarithmic term and a multiplicative constant. Overall these results imply that the betting CI~(and CS) admit stronger theoretical guarantees than the existing state-of-the-art EB-CI~(and CS); both in the asymptotic and finite-sample regimes.

Via

Abstract:We consider the problem of sequential change detection, where the goal is to design a scheme for detecting any changes in a parameter or functional $\theta$ of the data stream distribution that has small detection delay, but guarantees control on the frequency of false alarms in the absence of changes. In this paper, we describe a simple reduction from sequential change detection to sequential estimation using confidence sequences: we begin a new $(1-\alpha)$-confidence sequence at each time step, and proclaim a change when the intersection of all active confidence sequences becomes empty. We prove that the average run length is at least $1/\alpha$, resulting in a change detection scheme with minimal structural assumptions~(thus allowing for possibly dependent observations, and nonparametric distribution classes), but strong guarantees. Our approach bears an interesting parallel with the reduction from change detection to sequential testing of Lorden (1971) and the e-detector of Shin et al. (2022).

Via