Identifying relationships among stochastic processes is a key goal in disciplines that deal with complex temporal systems, such as economics. While the standard toolkit for multivariate time series analysis has many advantages, it can be difficult to capture nonlinear dynamics using linear vector autoregressive models. This difficulty has motivated the development of methods for variable selection, causal discovery, and graphical modeling for nonlinear time series, which routinely employ nonparametric tests for conditional independence. In this paper, we introduce the first framework for conditional independence testing that works with a single realization of a nonstationary nonlinear process. The key technical ingredients are time-varying nonlinear regression, time-varying covariance estimation, and a distribution-uniform strong Gaussian approximation.