What is facial recognition? Facial recognition is an AI-based technique for identifying or confirming an individual's identity using their face. It maps facial features from an image or video and then compares the information with a collection of known faces to find a match.
Papers and Code
Mar 26, 2025
Abstract:Sign language recognition (SLR) refers to interpreting sign language glosses from given videos automatically. This research area presents a complex challenge in computer vision because of the rapid and intricate movements inherent in sign languages, which encompass hand gestures, body postures, and even facial expressions. Recently, skeleton-based action recognition has attracted increasing attention due to its ability to handle variations in subjects and backgrounds independently. However, current skeleton-based SLR methods exhibit three limitations: 1) they often neglect the importance of realistic hand poses, where most studies train SLR models on non-realistic skeletal representations; 2) they tend to assume complete data availability in both training or inference phases, and capture intricate relationships among different body parts collectively; 3) these methods treat all sign glosses uniformly, failing to account for differences in complexity levels regarding skeletal representations. To enhance the realism of hand skeletal representations, we present a kinematic hand pose rectification method for enforcing constraints. Mitigating the impact of missing data, we propose a feature-isolated mechanism to focus on capturing local spatial-temporal context. This method captures the context concurrently and independently from individual features, thus enhancing the robustness of the SLR model. Additionally, to adapt to varying complexity levels of sign glosses, we develop an input-adaptive inference approach to optimise computational efficiency and accuracy. Experimental results demonstrate the effectiveness of our approach, as evidenced by achieving a new state-of-the-art (SOTA) performance on WLASL100 and LSA64. For WLASL100, we achieve a top-1 accuracy of 86.50\%, marking a relative improvement of 2.39% over the previous SOTA. For LSA64, we achieve a top-1 accuracy of 99.84%.
* 10 pages, ACM Multimedia
Via

Feb 28, 2025
Abstract:Dynamic Facial Expression Recognition (DFER) facilitates the understanding of psychological intentions through non-verbal communication. Existing methods struggle to manage irrelevant information, such as background noise and redundant semantics, which impacts both efficiency and effectiveness. In this work, we propose a novel supervised temporal soft masked autoencoder network for DFER, namely AdaTosk, which integrates a parallel supervised classification branch with the self-supervised reconstruction branch. The self-supervised reconstruction branch applies random binary hard mask to generate diverse training samples, encouraging meaningful feature representations in visible tokens. Meanwhile the classification branch employs an adaptive temporal soft mask to flexibly mask visible tokens based on their temporal significance. Its two key components, respectively of, class-agnostic and class-semantic soft masks, serve to enhance critical expression moments and reduce semantic redundancy over time. Extensive experiments conducted on widely-used benchmarks demonstrate that our AdaTosk remarkably reduces computational costs compared with current state-of-the-art methods while still maintaining competitive performance.
* 8 pages, 3 figures
Via

Feb 22, 2025
Abstract:The study of Dynamic Facial Expression Recognition (DFER) is a nascent field of research that involves the automated recognition of facial expressions in video data. Although existing research has primarily focused on learning representations under noisy and hard samples, the issue of the coexistence of both types of samples remains unresolved. In order to overcome this challenge, this paper proposes a robust method of distinguishing between hard and noisy samples. This is achieved by evaluating the prediction agreement of the model on different sampled clips of the video. Subsequently, methodologies that reinforce the learning of hard samples and mitigate the impact of noisy samples can be employed. Moreover, to identify the principal expression in a video and enhance the model's capacity for representation learning, comprising a key expression re-sampling framework and a dual-stream hierarchical network is proposed, namely Robust Dynamic Facial Expression Recognition (RDFER). The key expression re-sampling framework is designed to identify the key expression, thereby mitigating the potential confusion caused by non-target expressions. RDFER employs two sequence models with the objective of disentangling short-term facial movements and long-term emotional changes. The proposed method has been shown to outperform current State-Of-The-Art approaches in DFER through extensive experimentation on benchmark datasets such as DFEW and FERV39K. A comprehensive analysis provides valuable insights and observations regarding the proposed agreement. This work has significant implications for the field of dynamic facial expression recognition and promotes the further development of the field of noise-consistent robust learning in dynamic facial expression recognition. The code is available from [https://github.com/Cross-Innovation-Lab/RDFER].
Via

Mar 07, 2025
Abstract:This paper explores the use of partially homomorphic encryption (PHE) for encrypted vector similarity search, with a focus on facial recognition and broader applications like reverse image search, recommendation engines, and large language models (LLMs). While fully homomorphic encryption (FHE) exists, we demonstrate that encrypted cosine similarity can be computed using PHE, offering a more practical alternative. Since PHE does not directly support cosine similarity, we propose a method that normalizes vectors in advance, enabling dot product calculations as a proxy. We also apply min-max normalization to handle negative dimension values. Experiments on the Labeled Faces in the Wild (LFW) dataset use DeepFace's FaceNet128d, FaceNet512d, and VGG-Face (4096d) models in a two-tower setup. Pre-encrypted embeddings are stored in one tower, while an edge device captures images, computes embeddings, and performs encrypted-plaintext dot products via additively homomorphic encryption. We implement this with LightPHE, evaluating Paillier, Damgard-Jurik, and Okamoto-Uchiyama schemes, excluding others due to performance or decryption complexity. Tests at 80-bit and 112-bit security (NIST-secure until 2030) compare PHE against FHE (via TenSEAL), analyzing encryption, decryption, operation time, cosine similarity loss, key/ciphertext sizes. Results show PHE is less computationally intensive, faster, and produces smaller ciphertexts/keys, making it well-suited for memory-constrained environments and real-world privacy-preserving encrypted similarity search.
Via

Feb 21, 2025
Abstract:Facial landmark tracking plays a vital role in applications such as facial recognition, expression analysis, and medical diagnostics. In this paper, we consider the performance of the Extended Kalman Filter (EKF) and Unscented Kalman Filter (UKF) in tracking 3D facial motion in both deterministic and stochastic settings. We first analyze a noise-free environment where the state transition is purely deterministic, demonstrating that UKF outperforms EKF by achieving lower mean squared error (MSE) due to its ability to capture higher-order nonlinearities. However, when stochastic noise is introduced, EKF exhibits superior robustness, maintaining lower mean square error (MSE) compared to UKF, which becomes more sensitive to measurement noise and occlusions. Our results highlight that UKF is preferable for high-precision applications in controlled environments, whereas EKF is better suited for real-world scenarios with unpredictable noise. These findings provide practical insights for selecting the appropriate filtering technique in 3D facial tracking applications, such as motion capture and facial recognition.
* 25 pages, 10 figures
Via

Mar 27, 2025
Abstract:Lip Reading, or Visual Automatic Speech Recognition (V-ASR), is a complex task requiring the interpretation of spoken language exclusively from visual cues, primarily lip movements and facial expressions. This task is especially challenging due to the absence of auditory information and the inherent ambiguity when visually distinguishing phonemes that have overlapping visemes where different phonemes appear identical on the lips. Current methods typically attempt to predict words or characters directly from these visual cues, but this approach frequently encounters high error rates due to coarticulation effects and viseme ambiguity. We propose a novel two-stage, phoneme-centric framework for Visual Automatic Speech Recognition (V-ASR) that addresses these longstanding challenges. First, our model predicts a compact sequence of phonemes from visual inputs using a Video Transformer with a CTC head, thereby reducing the task complexity and achieving robust speaker invariance. This phoneme output then serves as the input to a fine-tuned Large Language Model (LLM), which reconstructs coherent words and sentences by leveraging broader linguistic context. Unlike existing methods that either predict words directly-often faltering on visually similar phonemes-or rely on large-scale multimodal pre-training, our approach explicitly encodes intermediate linguistic structure while remaining highly data efficient. We demonstrate state-of-the-art performance on two challenging datasets, LRS2 and LRS3, where our method achieves significant reductions in Word Error Rate (WER) achieving a SOTA WER of 18.7 on LRS3 despite using 99.4% less labelled data than the next best approach.
Via

Feb 27, 2025
Abstract:Facial appearance editing is crucial for digital avatars, AR/VR, and personalized content creation, driving realistic user experiences. However, preserving identity with generative models is challenging, especially in scenarios with limited data availability. Traditional methods often require multiple images and still struggle with unnatural face shifts, inconsistent hair alignment, or excessive smoothing effects. To overcome these challenges, we introduce a novel diffusion-based framework, InstaFace, to generate realistic images while preserving identity using only a single image. Central to InstaFace, we introduce an efficient guidance network that harnesses 3D perspectives by integrating multiple 3DMM-based conditionals without introducing additional trainable parameters. Moreover, to ensure maximum identity retention as well as preservation of background, hair, and other contextual features like accessories, we introduce a novel module that utilizes feature embeddings from a facial recognition model and a pre-trained vision-language model. Quantitative evaluations demonstrate that our method outperforms several state-of-the-art approaches in terms of identity preservation, photorealism, and effective control of pose, expression, and lighting.
Via

Mar 27, 2025
Abstract:Social intelligence, the ability to interpret emotions, intentions, and behaviors, is essential for effective communication and adaptive responses. As robots and AI systems become more prevalent in caregiving, healthcare, and education, the demand for AI that can interact naturally with humans grows. However, creating AI that seamlessly integrates multiple modalities, such as vision and speech, remains a challenge. Current video-based methods for social intelligence rely on general video recognition or emotion recognition techniques, often overlook the unique elements inherent in human interactions. To address this, we propose the Looped Video Debating (LVD) framework, which integrates Large Language Models (LLMs) with visual information, such as facial expressions and body movements, to enhance the transparency and reliability of question-answering tasks involving human interaction videos. Our results on the Social-IQ 2.0 benchmark show that LVD achieves state-of-the-art performance without fine-tuning. Furthermore, supplementary human annotations on existing datasets provide insights into the model's accuracy, guiding future improvements in AI-driven social intelligence.
Via

Mar 04, 2025
Abstract:Facial acne is a common disease, especially among adolescents, negatively affecting both physically and psychologically. Classifying acne is vital to providing the appropriate treatment. Traditional visual inspection or expert scanning is time-consuming and difficult to differentiate acne types. This paper introduces an automated expert system for acne recognition and classification. The proposed method employs a machine learning-based technique to classify and evaluate six types of acne diseases to facilitate the diagnosis of dermatologists. The pre-processing phase includes contrast improvement, smoothing filter, and RGB to L*a*b color conversion to eliminate noise and improve the classification accuracy. Then, a clustering-based segmentation method, k-means clustering, is applied for segmenting the disease-affected regions that pass through the feature extraction step. Characteristics of these disease-affected regions are extracted based on a combination of gray-level co-occurrence matrix (GLCM) and Statistical features. Finally, five different machine learning classifiers are employed to classify acne diseases. Experimental results show that the Random Forest (RF) achieves the highest accuracy of 98.50%, which is promising compared to the state-of-the-art methods.
Via

Mar 13, 2025
Abstract:The rapid growth of social media has led to the widespread sharing of individual portrait images, which pose serious privacy risks due to the capabilities of automatic face recognition (AFR) systems for mass surveillance. Hence, protecting facial privacy against unauthorized AFR systems is essential. Inspired by the generation capability of the emerging diffusion models, recent methods employ diffusion models to generate adversarial face images for privacy protection. However, they suffer from the diffusion purification effect, leading to a low protection success rate (PSR). In this paper, we first propose learning unconditional embeddings to increase the learning capacity for adversarial modifications and then use them to guide the modification of the adversarial latent code to weaken the diffusion purification effect. Moreover, we integrate an identity-preserving structure to maintain structural consistency between the original and generated images, allowing human observers to recognize the generated image as having the same identity as the original. Extensive experiments conducted on two public datasets, i.e., CelebA-HQ and LADN, demonstrate the superiority of our approach. The protected faces generated by our method outperform those produced by existing facial privacy protection approaches in terms of transferability and natural appearance.
Via
