Online action detection (OAD) is a practical yet challenging task, which has attracted increasing attention in recent years. A typical OAD system mainly consists of three modules: a frame-level feature extractor which is usually based on pre-trained deep Convolutional Neural Networks (CNNs), a temporal modeling module, and an action classifier. Among them, the temporal modeling module is crucial which aggregates discriminative information from historical and current features. Though many temporal modeling methods have been developed for OAD and other topics, their effects are lack of investigation on OAD fairly. This paper aims to provide a comprehensive study on temporal modeling for OAD including four meta types of temporal modeling methods, \ie temporal pooling, temporal convolution, recurrent neural networks, and temporal attention, and uncover some good practices to produce a state-of-the-art OAD system. Many of them are explored in OAD for the first time, and extensively evaluated with various hyper parameters. Furthermore, based on our comprehensive study, we present several hybrid temporal modeling methods, which outperform the recent state-of-the-art methods with sizable margins on THUMOS-14 and TVSeries.
Multi-step-ahead time series prediction is one of the most challenging research topics in the field of time series modeling and prediction, and is continually under research. Recently, the multiple-input several multiple-outputs (MISMO) modeling strategy has been proposed as a promising alternative for multi-step-ahead time series prediction, exhibiting advantages compared with the two currently dominating strategies, the iterated and the direct strategies. Built on the established MISMO strategy, this study proposes a particle swarm optimization (PSO)-based MISMO modeling strategy, which is capable of determining the number of sub-models in a self-adaptive mode, with varying prediction horizons. Rather than deriving crisp divides with equal-size s prediction horizons from the established MISMO, the proposed PSO-MISMO strategy, implemented with neural networks, employs a heuristic to create flexible divides with varying sizes of prediction horizons and to generate corresponding sub-models, providing considerable flexibility in model construction, which has been validated with simulated and real datasets.
Cyberbullying, identified as intended and repeated online bullying behavior, has become increasingly prevalent in the past few decades. Despite the significant progress made thus far, the focus of most existing work on cyberbullying detection lies in the independent content analysis of different comments within a social media session. We argue that such leading notions of analysis suffer from three key limitations: they overlook the temporal correlations among different comments; they only consider the content within a single comment rather than the topic coherence across comments; they remain generic and exploit limited interactions between social media users. In this work, we observe that user comments in the same session may be inherently related, e.g., discussing similar topics, and their interaction may evolve over time. We also show that modeling such topic coherence and temporal interaction are critical to capture the repetitive characteristics of bullying behavior, thus leading to better predicting performance. To achieve the goal, we first construct a unified temporal graph for each social media session. Drawing on recent advances in graph neural network, we then propose a principled approach for modeling the temporal dynamics and topic coherence throughout user interactions. We empirically evaluate the effectiveness of our approach with the tasks of session-level bullying detection and comment-level case study.
Separable Non-negative Matrix Factorization (SNMF) is an important method for topic modeling, where "separable" assumes every topic contains at least one anchor word, defined as a word that has non-zero probability only on that topic. SNMF focuses on the word co-occurrence patterns to reveal topics by two steps: anchor word selection and topic recovery. The quality of the anchor words strongly influences the quality of the extracted topics. Existing anchor word selection algorithm is to greedily find an approximate convex hull in a high-dimensional word co-occurrence space. In this work, we propose a new method for the anchor word selection by associating the word co-occurrence probability with the words similarity and assuming that the most different words on semantic are potential candidates for the anchor words. Therefore, if the similarity of a word-pair is very low, then the two words are very likely to be the anchor words. According to the statistical information of text corpora, we can get the similarity of all word-pairs. We build the word similarity graph where the nodes correspond to words and weights on edges stand for the word-pair similarity. Following this way, we design a greedy method to find a minimum edge-weight anchor clique of a given size in the graph for the anchor word selection. Extensive experiments on real-world corpus demonstrate the effectiveness of the proposed anchor word selection method that outperforms the common convex hull-based methods on the revealed topic quality. Meanwhile, our method is much faster than typical SNMF based method.
We integrate automatic speech recognition (ASR) and question answering (QA) to realize a speech-driven QA system, and evaluate its performance. We adapt an N-gram language model to natural language questions, so that the input of our system can be recognized with a high accuracy. We target WH-questions which consist of the topic part and fixed phrase used to ask about something. We first produce a general N-gram model intended to recognize the topic and emphasize the counts of the N-grams that correspond to the fixed phrases. Given a transcription by the ASR engine, the QA engine extracts the answer candidates from target documents. We propose a passage retrieval method robust against recognition errors in the transcription. We use the QA test collection produced in NTCIR, which is a TREC-style evaluation workshop, and show the effectiveness of our method by means of experiments.
Recent work has shown that finite mixture models with $m$ components are identifiable, while making no assumptions on the mixture components, so long as one has access to groups of samples of size $2m-1$ which are known to come from the same mixture component. In this work we generalize that result and show that, if every subset of $k$ mixture components of a mixture model are linearly independent, then that mixture model is identifiable with only $(2m-1)/(k-1)$ samples per group. We further show that this value cannot be improved. We prove an analogous result for a stronger form of identifiability known as "determinedness" along with a corresponding lower bound. This independence assumption almost surely holds if mixture components are chosen randomly from a $k$-dimensional space. We describe some implications of our results for multinomial mixture models and topic modeling.
The past century was era of linear systems. Either systems (especially industrial ones) were simple (quasi)linear or linear approximations were accurate enough. In addition, just at the ending decades of the century profusion of computing devices were available, before then due to lack of computational resources it was not easy to evaluate available nonlinear system studies. At the moment both these two conditions changed, systems are highly complex and also pervasive amount of computation strength is cheap and easy to achieve. For recent era, a new branch of supervised learning well known as surrogate modeling (meta-modeling, surface modeling) has been devised which aimed at answering new needs of modeling realm. This short literature survey is on to introduce surrogate modeling to whom is familiar with the concepts of supervised learning. Necessity, challenges and visions of the topic are considered.
This work presents a new resource for borrowing identification and analyzes the performance and errors of several models on this task. We introduce a new annotated corpus of Spanish newswire rich in unassimilated lexical borrowings -- words from one language that are introduced into another without orthographic adaptation -- and use it to evaluate how several sequence labeling models (CRF, BiLSTM-CRF, and Transformer-based models) perform. The corpus contains 370,000 tokens and is larger, more borrowing-dense, OOV-rich, and topic-varied than previous corpora available for this task. Our results show that a BiLSTM-CRF model fed with subword embeddings along with either Transformer-based embeddings pretrained on codeswitched data or a combination of contextualized word embeddings outperforms results obtained by a multilingual BERT-based model.
Rich user behavior data has been proven to be of great value for click-through rate prediction tasks, especially in industrial applications such as recommender systems and online advertising. Both industry and academy have paid much attention to this topic and propose different approaches to modeling with long sequential user behavior data. Among them, memory network based model MIMN proposed by Alibaba, achieves SOTA with the co-design of both learning algorithm and serving system. MIMN is the first industrial solution that can model sequential user behavior data with length scaling up to 1000. However, MIMN fails to precisely capture user interests given a specific candidate item when the length of user behavior sequence increases further, say, by 10 times or more. This challenge exists widely in previously proposed approaches. In this paper, we tackle this problem by designing a new modeling paradigm, which we name as Search-based Interest Model (SIM). SIM extracts user interests with two cascaded search units: (i) General Search Unit acts as a general search from the raw and arbitrary long sequential behavior data, with query information from candidate item, and gets a Sub user Behavior Sequence which is relevant to candidate item; (ii) Exact Search Unit models the precise relationship between candidate item and SBS. This cascaded search paradigm enables SIM with a better ability to model lifelong sequential behavior data in both scalability and accuracy. Apart from the learning algorithm, we also introduce our hands-on experience on how to implement SIM in large scale industrial systems. Since 2019, SIM has been deployed in the display advertising system in Alibaba, bringing 7.1\% CTR and 4.4\% RPM lift, which is significant to the business. Serving the main traffic in our real system now, SIM models user behavior data with maximum length reaching up to 54000, pushing SOTA to 54x.