What is Topic Modeling? Topic modeling is a type of statistical modeling for discovering the abstract topics that occur in a collection of documents.
Papers and Code
Jul 10, 2025
Abstract:The explosive growth of textual data over time presents a significant challenge in uncovering evolving themes and trends. Existing dynamic topic modeling techniques, while powerful, often exist in fragmented pipelines that lack robust support for interpretation and user-friendly exploration. We introduce DTECT (Dynamic Topic Explorer & Context Tracker), an end-to-end system that bridges the gap between raw textual data and meaningful temporal insights. DTECT provides a unified workflow that supports data preprocessing, multiple model architectures, and dedicated evaluation metrics to analyze the topic quality of temporal topic models. It significantly enhances interpretability by introducing LLM-driven automatic topic labeling, trend analysis via temporally salient words, interactive visualizations with document-level summarization, and a natural language chat interface for intuitive data querying. By integrating these features into a single, cohesive platform, DTECT empowers users to more effectively track and understand thematic dynamics. DTECT is open-source and available at https://github.com/AdhyaSuman/DTECT.
Via

Jul 10, 2025
Abstract:Tracking the strategic focus of companies through topics in their earnings calls is a key task in financial analysis. However, as industries evolve, traditional topic modeling techniques struggle to dynamically capture emerging topics and their relationships. In this work, we propose an LLM-agent driven approach to discover and retrieve emerging topics from quarterly earnings calls. We propose an LLM-agent to extract topics from documents, structure them into a hierarchical ontology, and establish relationships between new and existing topics through a topic ontology. We demonstrate the use of extracted topics to infer company-level insights and emerging trends over time. We evaluate our approach by measuring ontology coherence, topic evolution accuracy, and its ability to surface emerging financial trends.
* The 2nd Workshop on Financial Information Retrieval in the Era of
Generative AI, The 48th International ACM SIGIR Conference on Research and
Development in Information Retrieval July 13-17, 2025 | Padua, Italy
Via

Jul 10, 2025
Abstract:Turn-taking is a fundamental component of spoken dialogue, however conventional studies mostly involve dyadic settings. This work focuses on applying voice activity projection (VAP) to predict upcoming turn-taking in triadic multi-party scenarios. The goal of VAP models is to predict the future voice activity for each speaker utilizing only acoustic data. This is the first study to extend VAP into triadic conversation. We trained multiple models on a Japanese triadic dataset where participants discussed a variety of topics. We found that the VAP trained on triadic conversation outperformed the baseline for all models but that the type of conversation affected the accuracy. This study establishes that VAP can be used for turn-taking in triadic dialogue scenarios. Future work will incorporate this triadic VAP turn-taking model into spoken dialogue systems.
* Accepted to Interspeech 2025
Via

Jul 08, 2025
Abstract:Understanding how policy language evolves over time is critical for assessing global responses to complex challenges such as climate change. Temporal analysis helps stakeholders, including policymakers and researchers, to evaluate past priorities, identify emerging themes, design governance strategies, and develop mitigation measures. Traditional approaches, such as manual thematic coding, are time-consuming and limited in capturing the complex, interconnected nature of global policy discourse. With the increasing relevance of unsupervised machine learning, these limitations can be addressed, particularly under high-volume, complex, and high-dimensional data conditions. In this work, we explore a novel approach that applies the dynamic embedded topic model (DETM) to analyze the evolution of global climate policy discourse. A probabilistic model designed to capture the temporal dynamics of topics over time. We collected a corpus of United Nations Framework Convention on Climate Change (UNFCCC) policy decisions from 1995 to 2023, excluding 2020 due to the postponement of COP26 as a result of the COVID-19 pandemic. The model reveals shifts from early emphases on greenhouse gases and international conventions to recent focuses on implementation, technical collaboration, capacity building, finance, and global agreements. Section 3 presents the modeling pipeline, including preprocessing, model training, and visualization of temporal word distributions. Our results show that DETM is a scalable and effective tool for analyzing the evolution of global policy discourse. Section 4 discusses the implications of these findings and we concluded with future directions and refinements to extend this approach to other policy domains.
* 10 pages, 7 figures. Code and data available at
https://github.com/AdeTheBade/TACPD.git
Via

Jul 08, 2025
Abstract:Link prediction infers missing or future relations between graph nodes, based on connection patterns. Scientific literature networks and knowledge graphs are typically large, sparse, and noisy, and often contain missing links between entities. We present an AI-driven hierarchical link prediction framework that integrates matrix factorization to infer hidden associations and steer discovery in complex material domains. Our method combines Hierarchical Nonnegative Matrix Factorization (HNMFk) and Boolean matrix factorization (BNMFk) with automatic model selection, as well as Logistic matrix factorization (LMF), we use to construct a three-level topic tree from a 46,862-document corpus focused on 73 transition-metal dichalcogenides (TMDs). These materials are studied in a variety of physics fields with many current and potential applications. An ensemble BNMFk + LMF approach fuses discrete interpretability with probabilistic scoring. The resulting HNMFk clusters map each material onto coherent topics like superconductivity, energy storage, and tribology. Also, missing or weakly connected links are highlight between topics and materials, suggesting novel hypotheses for cross-disciplinary exploration. We validate our method by removing publications about superconductivity in well-known superconductors, and show the model predicts associations with the superconducting TMD clusters. This shows the method finds hidden connections in a graph of material to latent topic associations built from scientific literature, especially useful when examining a diverse corpus of scientific documents covering the same class of phenomena or materials but originating from distinct communities and perspectives. The inferred links generating new hypotheses, produced by our method, are exposed through an interactive Streamlit dashboard, designed for human-in-the-loop scientific discovery.
* 4 pages, 3 figures, 1 table
Via

Jul 10, 2025
Abstract:With widespread adoption of transformer-based language models in AI, there is significant interest in the limits of LLMs capabilities, specifically so-called hallucinations, occurrences in which LLMs provide spurious, factually incorrect or nonsensical information when prompted on certain subjects. Furthermore, there is growing interest in agentic uses of LLMs - that is, using LLMs to create agents that act autonomously or semi-autonomously to carry out various tasks, including tasks with applications in the real world. This makes it important to understand the types of tasks LLMs can and cannot perform. We explore this topic from the perspective of the computational complexity of LLM inference. We show that LLMs are incapable of carrying out computational and agentic tasks beyond a certain complexity, and further that LLMs are incapable of verifying the accuracy of tasks beyond a certain complexity. We present examples of both, then discuss some consequences of this work.
* 6 pages; to be submitted to AAAI-26 after reviews
Via

Jul 09, 2025
Abstract:Prediction uncertainty quantification is a key research topic in recent years scientific and business problems. In insurance industries (\cite{parodi2023pricing}), assessing the range of possible claim costs for individual drivers improves premium pricing accuracy. It also enables insurers to manage risk more effectively by accounting for uncertainty in accident likelihood and severity. In the presence of covariates, a variety of regression-type models are often used for modeling insurance claims, ranging from relatively simple generalized linear models (GLMs) to regularized GLMs to gradient boosting models (GBMs). Conformal predictive inference has arisen as a popular distribution-free approach for quantifying predictive uncertainty under relatively weak assumptions of exchangeability, and has been well studied under the classic linear regression setting. In this work, we propose new non-conformity measures for GLMs and GBMs with GLM-type loss. Using regularized Tweedie GLM regression and LightGBM with Tweedie loss, we demonstrate conformal prediction performance with these non-conformity measures in insurance claims data. Our simulation results favor the use of locally weighted Pearson residuals for LightGBM over other methods considered, as the resulting intervals maintained the nominal coverage with the smallest average width.
Via

Jul 01, 2025
Abstract:Topic model and document-clustering evaluations either use automated metrics that align poorly with human preferences or require expert labels that are intractable to scale. We design a scalable human evaluation protocol and a corresponding automated approximation that reflect practitioners' real-world usage of models. Annotators -- or an LLM-based proxy -- review text items assigned to a topic or cluster, infer a category for the group, then apply that category to other documents. Using this protocol, we collect extensive crowdworker annotations of outputs from a diverse set of topic models on two datasets. We then use these annotations to validate automated proxies, finding that the best LLM proxies are statistically indistinguishable from a human annotator and can therefore serve as a reasonable substitute in automated evaluations. Package, web interface, and data are at https://github.com/ahoho/proxann
* Accepted to ACL 2025 (Main)
Via

Jul 02, 2025
Abstract:As Large Language Models (LLMs) become increasingly widespread, understanding how specific training data shapes their outputs is crucial for transparency, accountability, privacy, and fairness. To explore how LLMs leverage and replicate their training data, we introduce a systematic approach centered on analyzing low-perplexity sequences - high-probability text spans generated by the model. Our pipeline reliably extracts such long sequences across diverse topics while avoiding degeneration, then traces them back to their sources in the training data. Surprisingly, we find that a substantial portion of these low-perplexity spans cannot be mapped to the corpus. For those that do match, we quantify the distribution of occurrences across source documents, highlighting the scope and nature of verbatim recall and paving a way toward better understanding of how LLMs training data impacts their behavior.
* Camera-ready version. Accepted to ACL 2025. 10 pages, 4 figures, 6
tables
Via

Jul 03, 2025
Abstract:The running-time analysis of evolutionary combinatorial optimization is a fundamental topic in evolutionary computation. However, theoretical results regarding the $(\mu+\lambda)$ evolutionary algorithm (EA) for combinatorial optimization problems remain relatively scarce compared to those for simple pseudo-Boolean problems. This paper proposes a multiple-gain model to analyze the running time of EAs for combinatorial optimization problems. The proposed model is an improved version of the average gain model, which is a fitness-difference drift approach under the sigma-algebra condition to estimate the running time of evolutionary numerical optimization. The improvement yields a framework for estimating the expected first hitting time of a stochastic process in both average-case and worst-case scenarios. It also introduces novel running-time results of evolutionary combinatorial optimization, including two tighter time complexity upper bounds than the known results in the case of ($\mu+\lambda$) EA for the knapsack problem with favorably correlated weights, a closed-form expression of time complexity upper bound in the case of ($\mu+\lambda$) EA for general $k$-MAX-SAT problems and a tighter time complexity upper bounds than the known results in the case of ($\mu+\lambda$) EA for the traveling salesperson problem. Experimental results indicate that the practical running time aligns with the theoretical results, verifying that the multiple-gain model is an effective tool for running-time analysis of ($\mu+\lambda$) EA for combinatorial optimization problems.
Via
