Abstract:Tracking the strategic focus of companies through topics in their earnings calls is a key task in financial analysis. However, as industries evolve, traditional topic modeling techniques struggle to dynamically capture emerging topics and their relationships. In this work, we propose an LLM-agent driven approach to discover and retrieve emerging topics from quarterly earnings calls. We propose an LLM-agent to extract topics from documents, structure them into a hierarchical ontology, and establish relationships between new and existing topics through a topic ontology. We demonstrate the use of extracted topics to infer company-level insights and emerging trends over time. We evaluate our approach by measuring ontology coherence, topic evolution accuracy, and its ability to surface emerging financial trends.