Get our free extension to see links to code for papers anywhere online!

Chrome logo  Add to Chrome

Firefox logo Add to Firefox

"Sentiment Analysis": models, code, and papers

Knowing What, How and Why: A Near Complete Solution for Aspect-based Sentiment Analysis

Nov 05, 2019
Haiyun Peng, Lu Xu, Lidong Bing, Fei Huang, Wei Lu, Luo Si

Target-based sentiment analysis or aspect-based sentiment analysis (ABSA) refers to addressing various sentiment analysis tasks at a fine-grained level, which includes but is not limited to aspect extraction, aspect sentiment classification, and opinion extraction. There exist many solvers for the above individual subtasks or a combination of two subtasks, which can work together to tell a complete story, i.e. the discussed aspect, the sentiment on it, and the cause of the sentiment. However, no previous ABSA research tried to provide a complete solution in one shot. In this paper, we introduce a sentiment triplet extraction task. Particularly, a sentiment triplet (What, How, Why) consists of the aspect being discussed, the sentiment polarity on it, and the opinions causing such a sentiment. For sentence, one triplet from "Waiters are very friendly and the pasta is simply average" could be (`Waiters', positive, `friendly'). We propose a two-stage framework to address this task. The first stage predicts what, how and why in a unified model, and then the second stage pairs up the predicted what's and why's from the same input sentence so as to output triplets. In the experiments, our framework has set a benchmark performance in this novel triplet extraction task. Meanwhile, our framework outperforms the state-of-the-art methods (with modifications to fit in the setting) and the strongest sequence taggers on several benchmark datasets.


Learning Implicit Sentiment in Aspect-based Sentiment Analysis with Supervised Contrastive Pre-Training

Nov 03, 2021
Zhengyan Li, Yicheng Zou, Chong Zhang, Qi Zhang, Zhongyu Wei

Aspect-based sentiment analysis aims to identify the sentiment polarity of a specific aspect in product reviews. We notice that about 30% of reviews do not contain obvious opinion words, but still convey clear human-aware sentiment orientation, which is known as implicit sentiment. However, recent neural network-based approaches paid little attention to implicit sentiment entailed in the reviews. To overcome this issue, we adopt Supervised Contrastive Pre-training on large-scale sentiment-annotated corpora retrieved from in-domain language resources. By aligning the representation of implicit sentiment expressions to those with the same sentiment label, the pre-training process leads to better capture of both implicit and explicit sentiment orientation towards aspects in reviews. Experimental results show that our method achieves state-of-the-art performance on SemEval2014 benchmarks, and comprehensive analysis validates its effectiveness on learning implicit sentiment.

* Accepted as a long paper in the main conference of EMNLP 2021 

Combining Lexical Features and a Supervised Learning Approach for Arabic Sentiment Analysis

Oct 23, 2017
Samhaa R. El-Beltagy, Talaat Khalil, Amal Halaby, Muhammad Hammad

The importance of building sentiment analysis tools for Arabic social media has been recognized during the past couple of years, especially with the rapid increase in the number of Arabic social media users. One of the main difficulties in tackling this problem is that text within social media is mostly colloquial, with many dialects being used within social media platforms. In this paper, we present a set of features that were integrated with a machine learning based sentiment analysis model and applied on Egyptian, Saudi, Levantine, and MSA Arabic social media datasets. Many of the proposed features were derived through the use of an Arabic Sentiment Lexicon. The model also presents emoticon based features, as well as input text related features such as the number of segments within the text, the length of the text, whether the text ends with a question mark or not, etc. We show that the presented features have resulted in an increased accuracy across six of the seven datasets we've experimented with and which are all benchmarked. Since the developed model out-performs all existing Arabic sentiment analysis systems that have publicly available datasets, we can state that this model presents state-of-the-art in Arabic sentiment analysis.

* arXiv admin note: This version has been removed because it is in violation of arXiv's copyright policy 

Sentiment Analysis : A Literature Survey

Apr 16, 2013
Subhabrata Mukherjee, Pushpak Bhattacharyya

Our day-to-day life has always been influenced by what people think. Ideas and opinions of others have always affected our own opinions. The explosion of Web 2.0 has led to increased activity in Podcasting, Blogging, Tagging, Contributing to RSS, Social Bookmarking, and Social Networking. As a result there has been an eruption of interest in people to mine these vast resources of data for opinions. Sentiment Analysis or Opinion Mining is the computational treatment of opinions, sentiments and subjectivity of text. In this report, we take a look at the various challenges and applications of Sentiment Analysis. We will discuss in details various approaches to perform a computational treatment of sentiments and opinions. Various supervised or data-driven techniques to SA like Na\"ive Byes, Maximum Entropy, SVM, and Voted Perceptrons will be discussed and their strengths and drawbacks will be touched upon. We will also see a new dimension of analyzing sentiments by Cognitive Psychology mainly through the work of Janyce Wiebe, where we will see ways to detect subjectivity, perspective in narrative and understanding the discourse structure. We will also study some specific topics in Sentiment Analysis and the contemporary works in those areas.


A Variational Approach to Unsupervised Sentiment Analysis

Aug 21, 2020
Ziqian Zeng, Wenxuan Zhou, Xin Liu, Zizheng Lin, Yangqin Song, Michael David Kuo, Wan Hang Keith Chiu

In this paper, we propose a variational approach to unsupervised sentiment analysis. Instead of using ground truth provided by domain experts, we use target-opinion word pairs as a supervision signal. For example, in a document snippet "the room is big," (room, big) is a target-opinion word pair. These word pairs can be extracted by using dependency parsers and simple rules. Our objective function is to predict an opinion word given a target word while our ultimate goal is to learn a sentiment classifier. By introducing a latent variable, i.e., the sentiment polarity, to the objective function, we can inject the sentiment classifier to the objective function via the evidence lower bound. We can learn a sentiment classifier by optimizing the lower bound. We also impose sophisticated constraints on opinion words as regularization which encourages that if two documents have similar (dissimilar) opinion words, the sentiment classifiers should produce similar (different) probability distribution. We apply our method to sentiment analysis on customer reviews and clinical narratives. The experiment results show our method can outperform unsupervised baselines in sentiment analysis task on both domains, and our method obtains comparable results to the supervised method with hundreds of labels per aspect in customer reviews domain, and obtains comparable results to supervised methods in clinical narratives domain.

* arXiv admin note: substantial text overlap with arXiv:1904.05055 

A sentiment analysis model for car review texts based on adversarial training and whole word mask BERT

Jun 06, 2022
Xingchen Liu, Yawen Li, Yingxia Shao, Ang Li, Jian Liang

In the field of car evaluation, more and more netizens choose to express their opinions on the Internet platform, and these comments will affect the decision-making of buyers and the trend of car word-of-mouth. As an important branch of natural language processing (NLP), sentiment analysis provides an effective research method for analyzing the sentiment types of massive car review texts. However, due to the lexical professionalism and large text noise of review texts in the automotive field, when a general sentiment analysis model is applied to car reviews, the accuracy of the model will be poor. To overcome these above challenges, we aim at the sentiment analysis task of car review texts. From the perspective of word vectors, pre-training is carried out by means of whole word mask of proprietary vocabulary in the automotive field, and then training data is carried out through the strategy of an adversarial training set. Based on this, we propose a car review text sentiment analysis model based on adversarial training and whole word mask BERT(ATWWM-BERT).


SentiBench - a benchmark comparison of state-of-the-practice sentiment analysis methods

Jul 14, 2016
Filipe Nunes Ribeiro, Matheus Araújo, Pollyanna Gonçalves, Fabrício Benevenuto, Marcos André Gonçalves

In the last few years thousands of scientific papers have investigated sentiment analysis, several startups that measure opinions on real data have emerged and a number of innovative products related to this theme have been developed. There are multiple methods for measuring sentiments, including lexical-based and supervised machine learning methods. Despite the vast interest on the theme and wide popularity of some methods, it is unclear which one is better for identifying the polarity (i.e., positive or negative) of a message. Accordingly, there is a strong need to conduct a thorough apple-to-apple comparison of sentiment analysis methods, \textit{as they are used in practice}, across multiple datasets originated from different data sources. Such a comparison is key for understanding the potential limitations, advantages, and disadvantages of popular methods. This article aims at filling this gap by presenting a benchmark comparison of twenty-four popular sentiment analysis methods (which we call the state-of-the-practice methods). Our evaluation is based on a benchmark of eighteen labeled datasets, covering messages posted on social networks, movie and product reviews, as well as opinions and comments in news articles. Our results highlight the extent to which the prediction performance of these methods varies considerably across datasets. Aiming at boosting the development of this research area, we open the methods' codes and datasets used in this article, deploying them in a benchmark system, which provides an open API for accessing and comparing sentence-level sentiment analysis methods.


Sentiment Analysis For Modern Standard Arabic And Colloquial

May 12, 2015
Hossam S. Ibrahim, Sherif M. Abdou, Mervat Gheith

The rise of social media such as blogs and social networks has fueled interest in sentiment analysis. With the proliferation of reviews, ratings, recommendations and other forms of online expression, online opinion has turned into a kind of virtual currency for businesses looking to market their products, identify new opportunities and manage their reputations, therefore many are now looking to the field of sentiment analysis. In this paper, we present a feature-based sentence level approach for Arabic sentiment analysis. Our approach is using Arabic idioms/saying phrases lexicon as a key importance for improving the detection of the sentiment polarity in Arabic sentences as well as a number of novels and rich set of linguistically motivated features contextual Intensifiers, contextual Shifter and negation handling), syntactic features for conflicting phrases which enhance the sentiment classification accuracy. Furthermore, we introduce an automatic expandable wide coverage polarity lexicon of Arabic sentiment words. The lexicon is built with gold-standard sentiment words as a seed which is manually collected and annotated and it expands and detects the sentiment orientation automatically of new sentiment words using synset aggregation technique and free online Arabic lexicons and thesauruses. Our data focus on modern standard Arabic (MSA) and Egyptian dialectal Arabic tweets and microblogs (hotel reservation, product reviews, etc.). The experimental results using our resources and techniques with SVM classifier indicate high performance levels, with accuracies of over 95%.

* International Journal on Natural Language Computing (IJNLC) Vol. 4, No.2,April 2015 

Towards Sub-Word Level Compositions for Sentiment Analysis of Hindi-English Code Mixed Text

Nov 02, 2016
Ameya Prabhu, Aditya Joshi, Manish Shrivastava, Vasudeva Varma

Sentiment analysis (SA) using code-mixed data from social media has several applications in opinion mining ranging from customer satisfaction to social campaign analysis in multilingual societies. Advances in this area are impeded by the lack of a suitable annotated dataset. We introduce a Hindi-English (Hi-En) code-mixed dataset for sentiment analysis and perform empirical analysis comparing the suitability and performance of various state-of-the-art SA methods in social media. In this paper, we introduce learning sub-word level representations in LSTM (Subword-LSTM) architecture instead of character-level or word-level representations. This linguistic prior in our architecture enables us to learn the information about sentiment value of important morphemes. This also seems to work well in highly noisy text containing misspellings as shown in our experiments which is demonstrated in morpheme-level feature maps learned by our model. Also, we hypothesize that encoding this linguistic prior in the Subword-LSTM architecture leads to the superior performance. Our system attains accuracy 4-5% greater than traditional approaches on our dataset, and also outperforms the available system for sentiment analysis in Hi-En code-mixed text by 18%.

* Accepted paper at COLING 2016 

Video Sentiment Analysis with Bimodal Information-augmented Multi-Head Attention

Mar 09, 2021
Ting Wu, Junjie Peng, Wenqiang Zhang, Huiran Zhang, Chuanshuai Ma, Yansong Huang

Sentiment analysis is the basis of intelligent human-computer interaction. As one of the frontier research directions of artificial intelligence, it can help computers better identify human intentions and emotional states so that provide more personalized services. However, as human present sentiments by spoken words, gestures, facial expressions and others which involve variable forms of data including text, audio, video, etc., it poses many challenges to this study. Due to the limitations of unimodal sentiment analysis, recent research has focused on the sentiment analysis of videos containing time series data of multiple modalities. When analyzing videos with multimodal data, the key problem is how to fuse these heterogeneous data. In consideration that the contribution of each modality is different, current fusion methods tend to extract the important information of single modality prior to fusion, which ignores the consistency and complementarity of bimodal interaction and has influences on the final decision. To solve this problem, a video sentiment analysis method using multi-head attention with bimodal information augmented is proposed. Based on bimodal interaction, more important bimodal features are assigned larger weights. In this way, different feature representations are adaptively assigned corresponding attention for effective multimodal fusion. Extensive experiments were conducted on both Chinese and English public datasets. The results show that our approach outperforms the existing methods and can give an insight into the contributions of bimodal interaction among three modalities.

* 25 pages, 4 figures, author name and format corrected