Get our free extension to see links to code for papers anywhere online!

Chrome logo  Add to Chrome

Firefox logo Add to Firefox

"Sentiment Analysis": models, code, and papers

Adaptive Prompt Learning-based Few-Shot Sentiment Analysis

May 15, 2022
Pengfei Zhang, Tingting Chai, Yongdong Xu

In the field of natural language processing, sentiment analysis via deep learning has a excellent performance by using large labeled datasets. Meanwhile, labeled data are insufficient in many sentiment analysis, and obtaining these data is time-consuming and laborious. Prompt learning devotes to resolving the data deficiency by reformulating downstream tasks with the help of prompt. In this way, the appropriate prompt is very important for the performance of the model. This paper proposes an adaptive prompting(AP) construction strategy using seq2seq-attention structure to acquire the semantic information of the input sequence. Then dynamically construct adaptive prompt which can not only improve the quality of the prompt, but also can effectively generalize to other fields by pre-trained prompt which is constructed by existing public labeled data. The experimental results on FewCLUE datasets demonstrate that the proposed method AP can effectively construct appropriate adaptive prompt regardless of the quality of hand-crafted prompt and outperform the state-of-the-art baselines.

  
Access Paper or Ask Questions

[email protected] at SemEval-2022 Task 10: Structured Sentiment Analysis Using A Generative Approach

May 01, 2022
Raghav R, Adarsh Vemali, Rajdeep Mukherjee

Structured Sentiment Analysis (SSA) deals with extracting opinion tuples in a text, where each tuple (h, e, t, p) consists of h, the holder, who expresses a sentiment polarity p towards a target t through a sentiment expression e. While prior works explore graph-based or sequence labeling-based approaches for the task, we in this paper present a novel unified generative method to solve SSA, a SemEval2022 shared task. We leverage a BART-based encoder-decoder architecture and suitably modify it to generate, given a sentence, a sequence of opinion tuples. Each generated tuple consists of seven integers respectively representing the indices corresponding to the start and end positions of the holder, target, and expression spans, followed by the sentiment polarity class associated between the target and the sentiment expression. We perform rigorous experiments for both Monolingual and Cross-lingual subtasks, and achieve competitive Sentiment F1 scores on the leaderboard in both settings.

* 9 pages, accepted at SemEval 2022 (collocated with NAACL 2022) 
  
Access Paper or Ask Questions

MeisterMorxrc at SemEval-2020 Task 9: Fine-Tune Bert and Multitask Learning for Sentiment Analysis of Code-Mixed Tweets

Dec 15, 2020
Qi Wu, Peng Wang, Chenghao Huang

Natural language processing (NLP) has been applied to various fields including text classification and sentiment analysis. In the shared task of sentiment analysis of code-mixed tweets, which is a part of the SemEval-2020 competition~\cite{patwa2020sentimix}, we preprocess datasets by replacing emoji and deleting uncommon characters and so on, and then fine-tune the Bidirectional Encoder Representation from Transformers(BERT) to perform the best. After exhausting top3 submissions, Our team MeisterMorxrc achieves an averaged F1 score of 0.730 in this task, and and our codalab username is MeisterMorxrc.

  
Access Paper or Ask Questions

Recurrent Entity Networks with Delayed Memory Update for Targeted Aspect-based Sentiment Analysis

Apr 30, 2018
Fei Liu, Trevor Cohn, Timothy Baldwin

While neural networks have been shown to achieve impressive results for sentence-level sentiment analysis, targeted aspect-based sentiment analysis (TABSA) --- extraction of fine-grained opinion polarity w.r.t. a pre-defined set of aspects --- remains a difficult task. Motivated by recent advances in memory-augmented models for machine reading, we propose a novel architecture, utilising external "memory chains" with a delayed memory update mechanism to track entities. On a TABSA task, the proposed model demonstrates substantial improvements over state-of-the-art approaches, including those using external knowledge bases.

* Accepted to NAACL 2018 (camera-ready) 
  
Access Paper or Ask Questions

Exploiting Social Network Structure for Person-to-Person Sentiment Analysis

Sep 08, 2014
Robert West, Hristo S. Paskov, Jure Leskovec, Christopher Potts

Person-to-person evaluations are prevalent in all kinds of discourse and important for establishing reputations, building social bonds, and shaping public opinion. Such evaluations can be analyzed separately using signed social networks and textual sentiment analysis, but this misses the rich interactions between language and social context. To capture such interactions, we develop a model that predicts individual A's opinion of individual B by synthesizing information from the signed social network in which A and B are embedded with sentiment analysis of the evaluative texts relating A to B. We prove that this problem is NP-hard but can be relaxed to an efficiently solvable hinge-loss Markov random field, and we show that this implementation outperforms text-only and network-only versions in two very different datasets involving community-level decision-making: the Wikipedia Requests for Adminship corpus and the Convote U.S. Congressional speech corpus.

  
Access Paper or Ask Questions

Weighed Domain-Invariant Representation Learning for Cross-domain Sentiment Analysis

Sep 18, 2019
Minlong Peng, Qi Zhang, Xuanjing Huang

Cross-domain sentiment analysis is currently a hot topic in the research and engineering areas. One of the most popular frameworks in this field is the domain-invariant representation learning (DIRL) paradigm, which aims to learn a distribution-invariant feature representation across domains. However, in this work, we find out that applying DIRL may harm domain adaptation when the label distribution $\rm{P}(\rm{Y})$ changes across domains. To address this problem, we propose a modification to DIRL, obtaining a novel weighted domain-invariant representation learning (WDIRL) framework. We show that it is easy to transfer existing SOTA DIRL models to WDIRL. Empirical studies on extensive cross-domain sentiment analysis tasks verified our statements and showed the effectiveness of our proposed solution.

* Address the problem of the domain-invariant representation learning framework under target shift 
  
Access Paper or Ask Questions

[email protected]: Sentiment Analysis of Code-Mixed Dravidian text using XLNet

Oct 15, 2020
Shubhanker Banerjee, Arun Jayapal, Sajeetha Thavareesan

Social media has penetrated into multilingual societies, however most of them use English to be a preferred language for communication. So it looks natural for them to mix their cultural language with English during conversations resulting in abundance of multilingual data, call this code-mixed data, available in todays' world.Downstream NLP tasks using such data is challenging due to the semantic nature of it being spread across multiple languages.One such Natural Language Processing task is sentiment analysis, for this we use an auto-regressive XLNet model to perform sentiment analysis on code-mixed Tamil-English and Malayalam-English datasets.

* 7 pages 
  
Access Paper or Ask Questions

Improving Sentiment Analysis in Arabic Using Word Representation

Mar 30, 2018
Abdulaziz M. Alayba, Vasile Palade, Matthew England, Rahat Iqbal

The complexities of Arabic language in morphology, orthography and dialects makes sentiment analysis for Arabic more challenging. Also, text feature extraction from short messages like tweets, in order to gauge the sentiment, makes this task even more difficult. In recent years, deep neural networks were often employed and showed very good results in sentiment classification and natural language processing applications. Word embedding, or word distributing approach, is a current and powerful tool to capture together the closest words from a contextual text. In this paper, we describe how we construct Word2Vec models from a large Arabic corpus obtained from ten newspapers in different Arab countries. By applying different machine learning algorithms and convolutional neural networks with different text feature selections, we report improved accuracy of sentiment classification (91%-95%) on our publicly available Arabic language health sentiment dataset [1]

* Proc. 2nd International Workshop on Arabic and Derived Script Analysis and Recognition (ASAR '18), pp. 13-18. IEEE, 2018 
* Authors accepted version of submission for ASAR 2018 
  
Access Paper or Ask Questions

LT3 at SemEval-2020 Task 9: Cross-lingual Embeddings for Sentiment Analysis of Hinglish Social Media Text

Oct 21, 2020
Pranaydeep Singh, Els Lefever

This paper describes our contribution to the SemEval-2020 Task 9 on Sentiment Analysis for Code-mixed Social Media Text. We investigated two approaches to solve the task of Hinglish sentiment analysis. The first approach uses cross-lingual embeddings resulting from projecting Hinglish and pre-trained English FastText word embeddings in the same space. The second approach incorporates pre-trained English embeddings that are incrementally retrained with a set of Hinglish tweets. The results show that the second approach performs best, with an F1-score of 70.52% on the held-out test data.

  
Access Paper or Ask Questions

Enhanced Aspect-Based Sentiment Analysis Models with Progressive Self-supervised Attention Learning

Mar 05, 2021
Jinsong Su, Jialong Tang, Hui Jiang, Ziyao Lu, Yubin Ge, Linfeng Song, Deyi Xiong, Le Sun, Jiebo Luo

In aspect-based sentiment analysis (ABSA), many neural models are equipped with an attention mechanism to quantify the contribution of each context word to sentiment prediction. However, such a mechanism suffers from one drawback: only a few frequent words with sentiment polarities are tended to be taken into consideration for final sentiment decision while abundant infrequent sentiment words are ignored by models. To deal with this issue, we propose a progressive self-supervised attention learning approach for attentional ABSA models. In this approach, we iteratively perform sentiment prediction on all training instances, and continually learn useful attention supervision information in the meantime. During training, at each iteration, context words with the highest impact on sentiment prediction, identified based on their attention weights or gradients, are extracted as words with active/misleading influence on the correct/incorrect prediction for each instance. Words extracted in this way are masked for subsequent iterations. To exploit these extracted words for refining ABSA models, we augment the conventional training objective with a regularization term that encourages ABSA models to not only take full advantage of the extracted active context words but also decrease the weights of those misleading words. We integrate the proposed approach into three state-of-the-art neural ABSA models. Experiment results and in-depth analyses show that our approach yields better attention results and significantly enhances the performance of all three models. We release the source code and trained models at https://github.com/DeepLearnXMU/PSSAttention.

* Artificial Intelligence 2021 
* 31 pages. arXiv admin note: text overlap with arXiv:1906.01213 
  
Access Paper or Ask Questions
<<
38
39
40
41
42
43
44
45
46
47
48
49
50
>>