Sentiment analysis is the process of determining the sentiment of a piece of text, such as a tweet or a review.
Aspect-based sentiment analysis (ABSA) is a fine-grained sentiment analysis task that aims to identify sentiment toward specific aspects of an entity. While large language models (LLMs) have shown strong performance in various natural language processing (NLP) tasks, their capabilities for Czech ABSA remain largely unexplored. In this work, we conduct a comprehensive evaluation of 19 LLMs of varying sizes and architectures on Czech ABSA, comparing their performance in zero-shot, few-shot, and fine-tuning scenarios. Our results show that small domain-specific models fine-tuned for ABSA outperform general-purpose LLMs in zero-shot and few-shot settings, while fine-tuned LLMs achieve state-of-the-art results. We analyze how factors such as multilingualism, model size, and recency influence performance and present an error analysis highlighting key challenges, particularly in aspect term prediction. Our findings provide insights into the suitability of LLMs for Czech ABSA and offer guidance for future research in this area.
While aspect-based sentiment analysis (ABSA) has made substantial progress, challenges remain for low-resource languages, which are often overlooked in favour of English. Current cross-lingual ABSA approaches focus on limited, less complex tasks and often rely on external translation tools. This paper introduces a novel approach using constrained decoding with sequence-to-sequence models, eliminating the need for unreliable translation tools and improving cross-lingual performance by 5\% on average for the most complex task. The proposed method also supports multi-tasking, which enables solving multiple ABSA tasks with a single model, with constrained decoding boosting results by more than 10\%. We evaluate our approach across seven languages and six ABSA tasks, surpassing state-of-the-art methods and setting new benchmarks for previously unexplored tasks. Additionally, we assess large language models (LLMs) in zero-shot, few-shot, and fine-tuning scenarios. While LLMs perform poorly in zero-shot and few-shot settings, fine-tuning achieves competitive results compared to smaller multilingual models, albeit at the cost of longer training and inference times. We provide practical recommendations for real-world applications, enhancing the understanding of cross-lingual ABSA methodologies. This study offers valuable insights into the strengths and limitations of cross-lingual ABSA approaches, advancing the state-of-the-art in this challenging research domain.
Multimodal Machine Learning (MML) aims to integrate and analyze information from diverse modalities, such as text, audio, and visuals, enabling machines to address complex tasks like sentiment analysis, emotion recognition, and multimedia retrieval. Recently, Arabic MML has reached a certain level of maturity in its foundational development, making it time to conduct a comprehensive survey. This paper explores Arabic MML by categorizing efforts through a novel taxonomy and analyzing existing research. Our taxonomy organizes these efforts into four key topics: datasets, applications, approaches, and challenges. By providing a structured overview, this survey offers insights into the current state of Arabic MML, highlighting areas that have not been investigated and critical research gaps. Researchers will be empowered to build upon the identified opportunities and address challenges to advance the field.
This paper summarizes the results of evaluating a compositional approach for Focus Analysis (FA) in Linguistics and Sentiment Analysis (SA) in Natural Language Processing (NLP). While quantitative evaluations of compositional and non-compositional approaches in SA exist in NLP, similar quantitative evaluations are very rare in FA in Linguistics that deal with linguistic expressions representing focus or emphasis such as "it was John who left". We fill this gap in research by arguing that compositional rules in SA also apply to FA because FA and SA are closely related meaning that SA is part of FA. Our compositional approach in SA exploits basic syntactic rules such as rules of modification, coordination, and negation represented in the formalism of Universal Dependencies (UDs) in English and applied to words representing sentiments from sentiment dictionaries. Some of the advantages of our compositional analysis method for SA in contrast to non-compositional analysis methods are interpretability and explainability. We test the accuracy of our compositional approach and compare it with a non-compositional approach VADER that uses simple heuristic rules to deal with negation, coordination and modification. In contrast to previous related work that evaluates compositionality in SA on long reviews, this study uses more appropriate datasets to evaluate compositionality. In addition, we generalize the results of compositional approaches in SA to compositional approaches in FA.
Aspect-based sentiment analysis (ABSA) has received substantial attention in English, yet challenges remain for low-resource languages due to the scarcity of labelled data. Current cross-lingual ABSA approaches often rely on external translation tools and overlook the potential benefits of incorporating a small number of target language examples into training. In this paper, we evaluate the effect of adding few-shot target language examples to the training set across four ABSA tasks, six target languages, and two sequence-to-sequence models. We show that adding as few as ten target language examples significantly improves performance over zero-shot settings and achieves a similar effect to constrained decoding in reducing prediction errors. Furthermore, we demonstrate that combining 1,000 target language examples with English data can even surpass monolingual baselines. These findings offer practical insights for improving cross-lingual ABSA in low-resource and domain-specific settings, as obtaining ten high-quality annotated examples is both feasible and highly effective.
In this paper, we introduce a novel Czech dataset for aspect-based sentiment analysis (ABSA), which consists of 3.1K manually annotated reviews from the restaurant domain. The dataset is built upon the older Czech dataset, which contained only separate labels for the basic ABSA tasks such as aspect term extraction or aspect polarity detection. Unlike its predecessor, our new dataset is specifically designed for more complex tasks, e.g. target-aspect-category detection. These advanced tasks require a unified annotation format, seamlessly linking sentiment elements (labels) together. Our dataset follows the format of the well-known SemEval-2016 datasets. This design choice allows effortless application and evaluation in cross-lingual scenarios, ultimately fostering cross-language comparisons with equivalent counterpart datasets in other languages. The annotation process engaged two trained annotators, yielding an impressive inter-annotator agreement rate of approximately 90%. Additionally, we provide 24M reviews without annotations suitable for unsupervised learning. We present robust monolingual baseline results achieved with various Transformer-based models and insightful error analysis to supplement our contributions. Our code and dataset are freely available for non-commercial research purposes.
Current conversational AI systems often provide generic, one-size-fits-all interactions that overlook individual user characteristics and lack adaptive dialogue management. To address this gap, we introduce \textbf{HumAIne-chatbot}, an AI-driven conversational agent that personalizes responses through a novel user profiling framework. The system is pre-trained on a diverse set of GPT-generated virtual personas to establish a broad prior over user types. During live interactions, an online reinforcement learning agent refines per-user models by combining implicit signals (e.g. typing speed, sentiment, engagement duration) with explicit feedback (e.g., likes and dislikes). This profile dynamically informs the chatbot dialogue policy, enabling real-time adaptation of both content and style. To evaluate the system, we performed controlled experiments with 50 synthetic personas in multiple conversation domains. The results showed consistent improvements in user satisfaction, personalization accuracy, and task achievement when personalization features were enabled. Statistical analysis confirmed significant differences between personalized and nonpersonalized conditions, with large effect sizes across key metrics. These findings highlight the effectiveness of AI-driven user profiling and provide a strong foundation for future real-world validation.
AI researchers and practitioners increasingly apply large language models (LLMs) to what we call reasoning-intensive regression (RiR), i.e. deducing subtle numerical properties from text. Unlike standard language regression tasks, e.g. for sentiment or similarity, RiR often appears instead in ad-hoc problems like rubric-based scoring or domain-specific retrieval, where much deeper analysis of text is required while only limited task-specific training data and computation are available. We cast three realistic problems as RiR tasks to establish an initial benchmark, and use that to test our hypothesis that prompting frozen LLMs and finetuning Transformer encoders via gradient descent will both often struggle in RiR. We then propose MENTAT, a simple and lightweight method that combines batch-reflective prompt optimization with neural ensemble learning. MENTAT achieves up to 65% improvement over both baselines, though substantial room remains for future advances in RiR.
Multimodal sentiment analysis (MSA) aims to understand human emotions by integrating information from multiple modalities, such as text, audio, and visual data. However, existing methods often suffer from spurious correlations both within and across modalities, leading models to rely on statistical shortcuts rather than true causal relationships, thereby undermining generalization. To mitigate this issue, we propose a Multi-relational Multimodal Causal Intervention (MMCI) model, which leverages the backdoor adjustment from causal theory to address the confounding effects of such shortcuts. Specifically, we first model the multimodal inputs as a multi-relational graph to explicitly capture intra- and inter-modal dependencies. Then, we apply an attention mechanism to separately estimate and disentangle the causal features and shortcut features corresponding to these intra- and inter-modal relations. Finally, by applying the backdoor adjustment, we stratify the shortcut features and dynamically combine them with the causal features to encourage MMCI to produce stable predictions under distribution shifts. Extensive experiments on several standard MSA datasets and out-of-distribution (OOD) test sets demonstrate that our method effectively suppresses biases and improves performance.
Understanding covert narratives and implicit messaging is essential for analyzing bias and sentiment. Traditional NLP methods struggle with detecting subtle phrasing and hidden agendas. This study tackles two key challenges: (1) multi-label classification of narratives and sub-narratives in news articles, and (2) generating concise, evidence-based explanations for dominant narratives. We fine-tune a BERT model with a recall-oriented approach for comprehensive narrative detection, refining predictions using a GPT-4o pipeline for consistency. For narrative explanation, we propose a ReACT (Reasoning + Acting) framework with semantic retrieval-based few-shot prompting, ensuring grounded and relevant justifications. To enhance factual accuracy and reduce hallucinations, we incorporate a structured taxonomy table as an auxiliary knowledge base. Our results show that integrating auxiliary knowledge in prompts improves classification accuracy and justification reliability, with applications in media analysis, education, and intelligence gathering.