We introduce Green-VLA, a staged Vision-Language-Action (VLA) framework for real-world deployment on the Green humanoid robot while maintaining generalization across diverse embodiments. Green-VLA follows a five stage curriculum: (L0) foundational VLMs, (L1) multimodal grounding, (R0) multi-embodiment pretraining, (R1) embodiment-specific adaptation, and (R2) reinforcement-learning (RL) policy alignment. We couple a scalable data-processing pipeline (3,000 hours of demonstrations) with temporal alignment and quality filtering, and use a unified, embodiment-aware action interface enabling a single policy to control humanoids, mobile manipulators, and fixed-base arms. At inference, the VLA controller is enhanced with episode-progress prediction, out-of-distribution detection, and joint-prediction-based guidance to improve safety and precise target selection. Experiments on Simpler BRIDGE WidowX and CALVIN ABC-D, as well as real-robot evaluations, show strong generalization and performance gains from RL alignment in success rate, robustness, and long-horizon efficiency.
Anomaly detection is often formulated under the assumption that abnormality is an intrinsic property of an observation, independent of context. This assumption breaks down in many real-world settings, where the same object or action may be normal or anomalous depending on latent contextual factors (e.g., running on a track versus on a highway). We revisit \emph{contextual anomaly detection}, classically defined as context-dependent abnormality, and operationalize it in the visual domain, where anomaly labels depend on subject--context compatibility rather than intrinsic appearance. To enable systematic study of this setting, we introduce CAAD-3K, a benchmark that isolates contextual anomalies by controlling subject identity while varying context. We further propose a conditional compatibility learning framework that leverages vision--language representations to model subject--context relationships under limited supervision. Our method substantially outperforms existing approaches on CAAD-3K and achieves state-of-the-art performance on MVTec-AD and VisA, demonstrating that modeling context dependence complements traditional structural anomaly detection. Our code and dataset will be publicly released.
We introduce ECSEL, an explainable classification method that learns formal expressions in the form of signomial equations, motivated by the observation that many symbolic regression benchmarks admit compact signomial structure. ECSEL directly constructs a structural, closed-form expression that serves as both a classifier and an explanation. On standard symbolic regression benchmarks, our method recovers a larger fraction of target equations than competing state-of-the-art approaches while requiring substantially less computation. Leveraging this efficiency, ECSEL achieves classification accuracy competitive with established machine learning models without sacrificing interpretability. Further, we show that ECSEL satisfies some desirable properties regarding global feature behavior, decision-boundary analysis, and local feature attributions. Experiments on benchmark datasets and two real-world case studies i.e., e-commerce and fraud detection, demonstrate that the learned equations expose dataset biases, support counterfactual reasoning, and yield actionable insights.
Security vulnerabilities often arise unintentionally during development due to a lack of security expertise and code complexity. Traditional tools, such as static and dynamic analysis, detect vulnerabilities only after they are introduced in code, leading to costly remediation. This work explores a proactive strategy to prevent vulnerabilities by highlighting code regions that implement security-critical functionality -- such as data access, authentication, and input handling -- and providing guidance for their secure implementation. We present an IntelliJ IDEA plugin prototype that uses code-level software metrics to identify potentially security-critical methods and large language models (LLMs) to generate prevention-oriented explanations. Our initial evaluation on the Spring-PetClinic application shows that the selected metrics identify most known security-critical methods, while an LLM provides actionable, prevention-focused insights. Although these metrics capture structural properties rather than semantic aspects of security, this work lays the foundation for code-level security-aware metrics and enhanced explanations.
Autonomous drone pursuit requires not only detecting drones but also predicting their trajectories in a manner that enables kinematically feasible interception. Existing tracking methods optimize for prediction accuracy but ignore pursuit feasibility, resulting in trajectories that are physically impossible to intercept 99.9% of the time. We propose Perception-to-Pursuit (P2P), a track-centric temporal reasoning framework that bridges detection and actionable pursuit planning. Our method represents drone motion as compact 8-dimensional tokens capturing velocity, acceleration, scale, and smoothness, enabling a 12-frame causal transformer to reason about future behavior. We introduce the Intercept Success Rate (ISR) metric to measure pursuit feasibility under realistic interceptor constraints. Evaluated on the Anti-UAV-RGBT dataset with 226 real drone sequences, P2P achieves 28.12 pixel average displacement error and 0.597 ISR, representing a 77% improvement in trajectory prediction and 597x improvement in pursuit feasibility over tracking-only baselines, while maintaining perfect drone classification accuracy (100%). Our work demonstrates that temporal reasoning over motion patterns enables both accurate prediction and actionable pursuit planning.
Fine-tuned LLMs can covertly encode prompt secrets into outputs via steganographic channels. Prior work demonstrated this threat but relied on trivially recoverable encodings. We formalize payload recoverability via classifier accuracy and show previous schemes achieve 100\% recoverability. In response, we introduce low-recoverability steganography, replacing arbitrary mappings with embedding-space-derived ones. For Llama-8B (LoRA) and Ministral-8B (LoRA) trained on TrojanStego prompts, exact secret recovery rises from 17$\rightarrow$30\% (+78\%) and 24$\rightarrow$43\% (+80\%) respectively, while on Llama-70B (LoRA) trained on Wiki prompts, it climbs from 9$\rightarrow$19\% (+123\%), all while reducing payload recoverability. We then discuss detection. We argue that detecting fine-tuning-based steganographic attacks requires approaches beyond traditional steganalysis. Standard approaches measure distributional shift, which is an expected side-effect of fine-tuning. Instead, we propose a mechanistic interpretability approach: linear probes trained on later-layer activations detect the secret with up to 33\% higher accuracy in fine-tuned models compared to base models, even for low-recoverability schemes. This suggests that malicious fine-tuning leaves actionable internal signatures amenable to interpretability-based defenses.
Understanding user behavior is essential for improving digital experiences, optimizing business conversions, and mitigating threats like account takeovers, fraud, and bot attacks. Most platforms separate product analytics and security, creating fragmented visibility and delayed threat detection. Trackly, a scalable SaaS platform, unifies comprehensive user behavior analytics with real time, rule based anomaly detection. It tracks sessions, IP based geo location, device browser fingerprints, and granular events such as page views, add to cart, and checkouts. Suspicious activities logins from new devices or locations, impossible travel (Haversine formula), rapid bot like actions, VPN proxy usage, or multiple accounts per IP are flagged via configurable rules with weighted risk scoring, enabling transparent, explainable decisions. A real time dashboard provides global session maps, DAU MAU, bounce rates, and session durations. Integration is simplified with a lightweight JavaScript SDK and secure REST APIs. Implemented on a multi tenant microservices stack (ASP.NET Core, MongoDB, RabbitMQ, Next.js), Trackly achieved 98.1% accuracy, 97.7% precision, and 2.25% false positives on synthetic datasets, proving its efficiency for SMEs and ecommerce.
Endotracheal suctioning (ES) is an invasive yet essential clinical procedure that requires a high degree of skill to minimize patient risk - particularly in home care and educational settings, where consistent supervision may be limited. Despite its critical importance, automated recognition and feedback systems for ES training remain underexplored. To address this gap, this study proposes a unified, LLM-centered framework for video-based activity recognition benchmarked against conventional machine learning and deep learning approaches, and a pilot study on feedback generation. Within this framework, the Large Language Model (LLM) serves as the central reasoning module, performing both spatiotemporal activity recognition and explainable decision analysis from video data. Furthermore, the LLM is capable of verbalizing feedback in natural language, thereby translating complex technical insights into accessible, human-understandable guidance for trainees. Experimental results demonstrate that the proposed LLM-based approach outperforms baseline models, achieving an improvement of approximately 15-20\% in both accuracy and F1 score. Beyond recognition, the framework incorporates a pilot student-support module built upon anomaly detection and explainable AI (XAI) principles, which provides automated, interpretable feedback highlighting correct actions and suggesting targeted improvements. Collectively, these contributions establish a scalable, interpretable, and data-driven foundation for advancing nursing education, enhancing training efficiency, and ultimately improving patient safety.
Modern mobile applications rely on hidden interactions--gestures without visual cues like long presses and swipes--to provide functionality without cluttering interfaces. While experienced users may discover these interactions through prior use or onboarding tutorials, their implicit nature makes them difficult for most users to uncover. Similarly, mobile agents--systems designed to automate tasks on mobile user interfaces, powered by vision language models (VLMs)--struggle to detect veiled interactions or determine actions for completing tasks. To address this challenge, we present GhostUI, a new dataset designed to enable the detection of hidden interactions in mobile applications. GhostUI provides before-and-after screenshots, simplified view hierarchies, gesture metadata, and task descriptions, allowing VLMs to better recognize concealed gestures and anticipate post-interaction states. Quantitative evaluations with VLMs show that models fine-tuned on GhostUI outperform baseline VLMs, particularly in predicting hidden interactions and inferring post-interaction screens, underscoring GhostUI's potential as a foundation for advancing mobile task automation.
Sustainability reports are critical for ESG assessment, yet greenwashing and vague claims often undermine their reliability. Existing NLP models lack robustness to these practices, typically relying on surface-level patterns that generalize poorly. We propose a parameter-efficient framework that structures LLM latent spaces by combining contrastive learning with an ordinal ranking objective to capture graded distinctions between concrete actions and ambiguous claims. Our approach incorporates gated feature modulation to filter disclosure noise and utilizes MetaGradNorm to stabilize multi-objective optimization. Experiments in cross-category settings demonstrate superior robustness over standard baselines while revealing a trade-off between representational rigidity and generalization.