Abstract:Understanding user behavior is essential for improving digital experiences, optimizing business conversions, and mitigating threats like account takeovers, fraud, and bot attacks. Most platforms separate product analytics and security, creating fragmented visibility and delayed threat detection. Trackly, a scalable SaaS platform, unifies comprehensive user behavior analytics with real time, rule based anomaly detection. It tracks sessions, IP based geo location, device browser fingerprints, and granular events such as page views, add to cart, and checkouts. Suspicious activities logins from new devices or locations, impossible travel (Haversine formula), rapid bot like actions, VPN proxy usage, or multiple accounts per IP are flagged via configurable rules with weighted risk scoring, enabling transparent, explainable decisions. A real time dashboard provides global session maps, DAU MAU, bounce rates, and session durations. Integration is simplified with a lightweight JavaScript SDK and secure REST APIs. Implemented on a multi tenant microservices stack (ASP.NET Core, MongoDB, RabbitMQ, Next.js), Trackly achieved 98.1% accuracy, 97.7% precision, and 2.25% false positives on synthetic datasets, proving its efficiency for SMEs and ecommerce.
Abstract:Dragon fruit, renowned for its nutritional benefits and economic value, has experienced rising global demand due to its affordability and local availability. As dragon fruit cultivation expands, efficient pre- and post-harvest quality inspection has become essential for improving agricultural productivity and minimizing post-harvest losses. This study presents DragonFruitQualityNet, a lightweight Convolutional Neural Network (CNN) optimized for real-time quality assessment of dragon fruits on mobile devices. We curated a diverse dataset of 13,789 images, integrating self-collected samples with public datasets (dataset from Mendeley Data), and classified them into four categories: fresh, immature, mature, and defective fruits to ensure robust model training. The proposed model achieves an impressive 93.98% accuracy, outperforming existing methods in fruit quality classification. To facilitate practical adoption, we embedded the model into an intuitive mobile application, enabling farmers and agricultural stakeholders to conduct on-device, real-time quality inspections. This research provides an accurate, efficient, and scalable AI-driven solution for dragon fruit quality control, supporting digital agriculture and empowering smallholder farmers with accessible technology. By bridging the gap between research and real-world application, our work advances post-harvest management and promotes sustainable farming practices.