Sentiment analysis is the process of determining the sentiment of a piece of text, such as a tweet or a review.
Fine-grained opinion analysis of text provides a detailed understanding of expressed sentiments, including the addressed entity. Although this level of detail is sound, it requires considerable human effort and substantial cost to annotate opinions in datasets for training models, especially across diverse domains and real-world applications. We explore the feasibility of LLMs as automatic annotators for fine-grained opinion analysis, addressing the shortage of domain-specific labelled datasets. In this work, we use a declarative annotation pipeline. This approach reduces the variability of manual prompt engineering when using LLMs to identify fine-grained opinion spans in text. We also present a novel methodology for an LLM to adjudicate multiple labels and produce final annotations. After trialling the pipeline with models of different sizes for the Aspect Sentiment Triplet Extraction (ASTE) and Aspect-Category-Opinion-Sentiment (ACOS) analysis tasks, we show that LLMs can serve as automatic annotators and adjudicators, achieving high Inter-Annotator Agreement across individual LLM-based annotators. This reduces the cost and human effort needed to create these fine-grained opinion-annotated datasets.
We introduce DNIPRO, a novel longitudinal corpus of 246K news articles documenting the Russo-Ukrainian war from Feb 2022 to Aug 2024, spanning eleven media outlets across five nation states (Russia, Ukraine, U.S., U.K., and China) and three languages (English, Russian, and Mandarin Chinese). This multilingual resource features consistent and comprehensive metadata, and multiple types of annotation with rigorous human evaluations for downstream tasks relevant to systematic transnational analyses of contentious wartime discourse. DNIPRO's distinctive value lies in its inclusion of competing geopolitical perspectives, making it uniquely suited for studying narrative divergence, media framing, and information warfare. To demonstrate its utility, we include use case experiments using stance detection, sentiment analysis, topical framing, and contradiction analysis of major conflict events within the larger war. Our explorations reveal how outlets construct competing realities, with coverage exhibiting polarized interpretations that reflect geopolitical interests. Beyond supporting computational journalism research, DNIPRO provides a foundational resource for understanding how conflicting narratives emerge and evolve across global information ecosystems.
Repeated exposure to violence and abusive content in music and song content can influence listeners' emotions and behaviours, potentially normalising aggression or reinforcing harmful stereotypes. In this study, we explore the use of generative artificial intelligence (GenAI) and Large Language Models (LLMs) to automatically transform abusive words (vocal delivery) and lyrical content in popular music. Rather than simply muting or replacing a single word, our approach transforms the tone, intensity, and sentiment, thus not altering just the lyrics, but how it is expressed. We present a comparative analysis of four selected English songs and their transformed counterparts, evaluating changes through both acoustic and sentiment-based lenses. Our findings indicate that Gen-AI significantly reduces vocal aggressiveness, with acoustic analysis showing improvements in Harmonic to Noise Ratio, Cepstral Peak Prominence, and Shimmer. Sentiment analysis reduced aggression by 63.3-85.6\% across artists, with major improvements in chorus sections (up to 88.6\% reduction). The transformed versions maintained musical coherence while mitigating harmful content, offering a promising alternative to traditional content moderation that avoids triggering the "forbidden fruit" effect, where the censored content becomes more appealing simply because it is restricted. This approach demonstrates the potential for GenAI to create safer listening experiences while preserving artistic expression.
Large language models (LLMs) are increasingly used for emotional support and mental health-related interactions outside clinical settings, yet little is known about how people evaluate and relate to these systems in everyday use. We analyze 5,126 Reddit posts from 47 mental health communities describing experiential or exploratory use of AI for emotional support or therapy. Grounded in the Technology Acceptance Model and therapeutic alliance theory, we develop a theory-informed annotation framework and apply a hybrid LLM-human pipeline to analyze evaluative language, adoption-related attitudes, and relational alignment at scale. Our results show that engagement is shaped primarily by narrated outcomes, trust, and response quality, rather than emotional bond alone. Positive sentiment is most strongly associated with task and goal alignment, while companionship-oriented use more often involves misaligned alliances and reported risks such as dependence and symptom escalation. Overall, this work demonstrates how theory-grounded constructs can be operationalized in large-scale discourse analysis and highlights the importance of studying how users interpret language technologies in sensitive, real-world contexts.
Large Language Model (LLM) Agents are advancing quickly, with the increasing leveraging of LLM Agents to assist in development tasks such as code generation. While LLM Agents accelerate code generation, studies indicate they may introduce adverse effects on development. However, existing metrics solely measure pass rates, failing to reflect impacts on long-term maintainability and readability, and failing to capture human intuitive evaluations of PR. To increase the comprehensiveness of this problem, we investigate and evaluate the characteristics of LLM to know the pull requests' characteristics beyond the pass rate. We observe the code quality and maintainability within PRs based on code metrics to evaluate objective characteristics and developers' reactions to the pull requests from both humans and LLM's generation. Evaluation results indicate that LLM Agents frequently disregard code reuse opportunities, resulting in higher levels of redundancy compared to human developers. In contrast to the quality issues, our emotions analysis reveals that reviewers tend to express more neutral or positive emotions towards AI-generated contributions than human ones. This disconnect suggests that the surface-level plausibility of AI code masks redundancy, leading to the silent accumulation of technical debt in real-world development environments. Our research provides insights for improving human-AI collaboration.
Customer reviews contain rich signals about product weaknesses and unmet user needs, yet existing analytic methods rarely move beyond descriptive tasks such as sentiment analysis or aspect extraction. While large language models (LLMs) can generate free-form suggestions, their outputs often lack accuracy and depth of reasoning. In this paper, we present a multi-agent, LLM-based framework for prescriptive decision support, which transforms large scale review corpora into actionable business advice. The framework integrates four components: clustering to select representative reviews, generation of advices, iterative evaluation, and feasibility based ranking. This design couples corpus distillation with feedback driven advice refinement to produce outputs that are specific, actionable, and practical. Experiments across three service domains and multiple model families show that our framework consistently outperform single model baselines on actionability, specificity, and non-redundancy, with medium sized models approaching the performance of large model frameworks.
In federated learning, Transformer, as a popular architecture, faces critical challenges in defending against gradient attacks and improving model performance in both Computer Vision (CV) and Natural Language Processing (NLP) tasks. It has been revealed that the gradient of Position Embeddings (PEs) in Transformer contains sufficient information, which can be used to reconstruct the input data. To mitigate this issue, we introduce a Masked Jigsaw Puzzle (MJP) framework. MJP starts with random token shuffling to break the token order, and then a learnable \textit{unknown (unk)} position embedding is used to mask out the PEs of the shuffled tokens. In this manner, the local spatial information which is encoded in the position embeddings is disrupted, and the models are forced to learn feature representations that are less reliant on the local spatial information. Notably, with the careful use of MJP, we can not only improve models' robustness against gradient attacks, but also boost their performance in both vision and text application scenarios, such as classification for images (\textit{e.g.,} ImageNet-1K) and sentiment analysis for text (\textit{e.g.,} Yelp and Amazon). Experimental results suggest that MJP is a unified framework for different Transformer-based models in both vision and language tasks. Code is publicly available via https://github.com/ywxsuperstar/transformerattack
Most Multimodal Sentiment Analysis research has focused on point-wise regression. While straightforward, this approach is sensitive to label noise and neglects whether one sample is more positive than another, resulting in unstable predictions and poor correlation alignment. Pairwise ordinal learning frameworks emerged to address this gap, capturing relative order by learning from comparisons. Yet, they introduce two new trade-offs: First, they assign uniform importance to all comparisons, failing to adaptively focus on hard-to-rank samples. Second, they employ static ranking margins, which fail to reflect the varying semantic distances between sentiment groups. To address this, we propose a Two-Stage Group-wise Ranking and Calibration Framework (GRCF) that adapts the philosophy of Group Relative Policy Optimization (GRPO). Our framework resolves these trade-offs by simultaneously preserving relative ordinal structure, ensuring absolute score calibration, and adaptively focusing on difficult samples. Specifically, Stage 1 introduces a GRPO-inspired Advantage-Weighted Dynamic Margin Ranking Loss to build a fine-grained ordinal structure. Stage 2 then employs an MAE-driven objective to align prediction magnitudes. To validate its generalizability, we extend GRCF to classification tasks, including multimodal humor detection and sarcasm detection. GRCF achieves state-of-the-art performance on core regression benchmarks, while also showing strong generalizability in classification tasks.
This study investigates the use of prompt engineering to enhance large language models (LLMs), specifically GPT-4o-mini and gemini-1.5-flash, in sentiment analysis tasks. It evaluates advanced prompting techniques like few-shot learning, chain-of-thought prompting, and self-consistency against a baseline. Key tasks include sentiment classification, aspect-based sentiment analysis, and detecting subtle nuances such as irony. The research details the theoretical background, datasets, and methods used, assessing performance of LLMs as measured by accuracy, recall, precision, and F1 score. Findings reveal that advanced prompting significantly improves sentiment analysis, with the few-shot approach excelling in GPT-4o-mini and chain-of-thought prompting boosting irony detection in gemini-1.5-flash by up to 46%. Thus, while advanced prompting techniques overall improve performance, the fact that few-shot prompting works best for GPT-4o-mini and chain-of-thought excels in gemini-1.5-flash for irony detection suggests that prompting strategies must be tailored to both the model and the task. This highlights the importance of aligning prompt design with both the LLM's architecture and the semantic complexity of the task.
Multimodal emotion understanding requires effective integration of text, audio, and visual modalities for both discrete emotion recognition and continuous sentiment analysis. We present EGMF, a unified framework combining expert-guided multimodal fusion with large language models. Our approach features three specialized expert networks--a fine-grained local expert for subtle emotional nuances, a semantic correlation expert for cross-modal relationships, and a global context expert for long-range dependencies--adaptively integrated through hierarchical dynamic gating for context-aware feature selection. Enhanced multimodal representations are integrated with LLMs via pseudo token injection and prompt-based conditioning, enabling a single generative framework to handle both classification and regression through natural language generation. We employ LoRA fine-tuning for computational efficiency. Experiments on bilingual benchmarks (MELD, CHERMA, MOSEI, SIMS-V2) demonstrate consistent improvements over state-of-the-art methods, with superior cross-lingual robustness revealing universal patterns in multimodal emotional expressions across English and Chinese. We will release the source code publicly.