What is Voice Conversion? Voice conversion is the process of converting the voice of one speaker into the voice of another speaker.
Papers and Code
May 07, 2025
Abstract:In this work, we address the voice conversion (VC) task using a vector-based interface. To align audio embeddings between speakers, we employ discrete optimal transport mapping. Our evaluation results demonstrate the high quality and effectiveness of this method. Additionally, we show that applying discrete optimal transport as a post-processing step in audio generation can lead to the incorrect classification of synthetic audio as real.
* 4 pages, 6 figures, 1 table
Via

Apr 27, 2025
Abstract:Voice conversion (VC) stands as a crucial research area in speech synthesis, enabling the transformation of a speaker's vocal characteristics to resemble another while preserving the linguistic content. This technology has broad applications, including automated movie dubbing, speech-to-singing conversion, and assistive devices for pathological speech rehabilitation. With the increasing demand for high-quality and natural-sounding synthetic voices, researchers have developed a wide range of VC techniques. Among these, generative adversarial network (GAN)-based approaches have drawn considerable attention for their powerful feature-mapping capabilities and potential to produce highly realistic speech. Despite notable advancements, challenges such as ensuring training stability, maintaining linguistic consistency, and achieving perceptual naturalness continue to hinder progress in GAN-based VC systems. This systematic review presents a comprehensive analysis of the voice conversion landscape, highlighting key techniques, key challenges, and the transformative impact of GANs in the field. The survey categorizes existing methods, examines technical obstacles, and critically evaluates recent developments in GAN-based VC. By consolidating and synthesizing research findings scattered across the literature, this review provides a structured understanding of the strengths and limitations of different approaches. The significance of this survey lies in its ability to guide future research by identifying existing gaps, proposing potential directions, and offering insights for building more robust and efficient VC systems. Overall, this work serves as an essential resource for researchers, developers, and practitioners aiming to advance the state-of-the-art (SOTA) in voice conversion technology.
* 19 pages, 12 figures, 1 table
Via

May 05, 2025
Abstract:A voice AI agent that blends seamlessly into daily life would interact with humans in an autonomous, real-time, and emotionally expressive manner. Rather than merely reacting to commands, it would continuously listen, reason, and respond proactively, fostering fluid, dynamic, and emotionally resonant interactions. We introduce Voila, a family of large voice-language foundation models that make a step towards this vision. Voila moves beyond traditional pipeline systems by adopting a new end-to-end architecture that enables full-duplex, low-latency conversations while preserving rich vocal nuances such as tone, rhythm, and emotion. It achieves a response latency of just 195 milliseconds, surpassing the average human response time. Its hierarchical multi-scale Transformer integrates the reasoning capabilities of large language models (LLMs) with powerful acoustic modeling, enabling natural, persona-aware voice generation -- where users can simply write text instructions to define the speaker's identity, tone, and other characteristics. Moreover, Voila supports over one million pre-built voices and efficient customization of new ones from brief audio samples as short as 10 seconds. Beyond spoken dialogue, Voila is designed as a unified model for a wide range of voice-based applications, including automatic speech recognition (ASR), Text-to-Speech (TTS), and, with minimal adaptation, multilingual speech translation. Voila is fully open-sourced to support open research and accelerate progress toward next-generation human-machine interactions.
* 18 pages, 7 figures, Website: https://voila.maitrix.org
Via

May 05, 2025
Abstract:Pathologists rely on gigapixel whole-slide images (WSIs) to diagnose diseases like cancer, yet current digital pathology tools hinder diagnosis. The immense scale of WSIs, often exceeding 100,000 X 100,000 pixels, clashes with the limited views traditional monitors offer. This mismatch forces constant panning and zooming, increasing pathologist cognitive load, causing diagnostic fatigue, and slowing pathologists' adoption of digital methods. PathVis, our mixed-reality visualization platform for Apple Vision Pro, addresses these challenges. It transforms the pathologist's interaction with data, replacing cumbersome mouse-and-monitor navigation with intuitive exploration using natural hand gestures, eye gaze, and voice commands in an immersive workspace. PathVis integrates AI to enhance diagnosis. An AI-driven search function instantly retrieves and displays the top five similar patient cases side-by-side, improving diagnostic precision and efficiency through rapid comparison. Additionally, a multimodal conversational AI assistant offers real-time image interpretation support and aids collaboration among pathologists across multiple Apple devices. By merging the directness of traditional pathology with advanced mixed-reality visualization and AI, PathVis improves diagnostic workflows, reduces cognitive strain, and makes pathology practice more effective and engaging. The PathVis source code and a demo video are publicly available at: https://github.com/jaiprakash1824/Path_Vis
Via

Apr 22, 2025
Abstract:Using a multi-accented corpus of parallel utterances for use with commercial speech devices, we present a case study to show that it is possible to quantify a degree of confidence about a source speaker's identity in the case of one-to-one voice conversion. Following voice conversion using a HiFi-GAN vocoder, we compare information leakage for a range speaker characteristics; assuming a "worst-case" white-box scenario, we quantify our confidence to perform inference and narrow the pool of likely source speakers, reinforcing the regulatory obligation and moral duty that providers of synthetic voices have to ensure the privacy of their speakers' data.
* Accepted at IEEE 23rd International Conference of the Biometrics
Special Interest Group (BIOSIG 2024)
Via

Apr 22, 2025
Abstract:Recently, fake audio detection has gained significant attention, as advancements in speech synthesis and voice conversion have increased the vulnerability of automatic speaker verification (ASV) systems to spoofing attacks. A key challenge in this task is generalizing models to detect unseen, out-of-distribution (OOD) attacks. Although existing approaches have shown promising results, they inherently suffer from overconfidence issues due to the usage of softmax for classification, which can produce unreliable predictions when encountering unpredictable spoofing attempts. To deal with this limitation, we propose a novel framework called fake audio detection with evidential learning (FADEL). By modeling class probabilities with a Dirichlet distribution, FADEL incorporates model uncertainty into its predictions, thereby leading to more robust performance in OOD scenarios. Experimental results on the ASVspoof2019 Logical Access (LA) and ASVspoof2021 LA datasets indicate that the proposed method significantly improves the performance of baseline models. Furthermore, we demonstrate the validity of uncertainty estimation by analyzing a strong correlation between average uncertainty and equal error rate (EER) across different spoofing algorithms.
* Accepted at ICASSP 2025
Via

Apr 16, 2025
Abstract:Voice conversion is a task of synthesizing an utterance with target speaker's voice while maintaining linguistic information of the source utterance. While a speaker can produce varying utterances from a single script with different intonations, conventional voice conversion models were limited to producing only one result per source input. To overcome this limitation, we propose a novel approach for voice conversion with diverse intonations using conditional variational autoencoder (CVAE). Experiments have shown that the speaker's style feature can be mapped into a latent space with Gaussian distribution. We have also been able to convert voices with more diverse intonation by making the posterior of the latent space more complex with inverse autoregressive flow (IAF). As a result, the converted voice not only has a diversity of intonations, but also has better sound quality than the model without CVAE.
* 2 pages, Machine Learning in Speech and Language Processing Workshop
(MLSLP) 2018
Via

Apr 18, 2025
Abstract:After demonstrating significant success in image synthesis, Generative Adversarial Network (GAN) models have likewise made significant progress in the field of speech synthesis, leveraging their capacity to adapt the precise distribution of target data through adversarial learning processes. Notably, in the realm of State-Of-The-Art (SOTA) GAN-based Voice Conversion (VC) models, there exists a substantial disparity in naturalness between real and GAN-generated speech samples. Furthermore, while many GAN models currently operate on a single generator discriminator learning approach, optimizing target data distribution is more effectively achievable through a single generator multi-discriminator learning scheme. Hence, this study introduces a novel GAN model named Collective Learning Mechanism-based Optimal Transport GAN (CLOT-GAN) model, incorporating multiple discriminators, including the Deep Convolutional Neural Network (DCNN) model, Vision Transformer (ViT), and conformer. The objective of integrating various discriminators lies in their ability to comprehend the formant distribution of mel-spectrograms, facilitated by a collective learning mechanism. Simultaneously, the inclusion of Optimal Transport (OT) loss aims to precisely bridge the gap between the source and target data distribution, employing the principles of OT theory. The experimental validation on VCC 2018, VCTK, and CMU-Arctic datasets confirms that the CLOT-GAN-VC model outperforms existing VC models in objective and subjective assessments.
* 7 pages, 2 figures, 3 tables
Via

Apr 11, 2025
Abstract:Voice conversion (VC) transforms source speech into a target voice by preserving the content. However, timbre information from the source speaker is inherently embedded in the content representations, causing significant timbre leakage and reducing similarity to the target speaker. To address this, we introduce a residual block to a content extractor. The residual block consists of two weighted branches: 1) universal semantic dictionary based Content Feature Re-expression (CFR) module, supplying timbre-free content representation. 2) skip connection to the original content layer, providing complementary fine-grained information. In the CFR module, each dictionary entry in the universal semantic dictionary represents a phoneme class, computed statistically using speech from multiple speakers, creating a stable, speaker-independent semantic set. We introduce a CFR method to obtain timbre-free content representations by expressing each content frame as a weighted linear combination of dictionary entries using corresponding phoneme posteriors as weights. Extensive experiments across various VC frameworks demonstrate that our approach effectively mitigates timbre leakage and significantly improves similarity to the target speaker.
Via

Apr 14, 2025
Abstract:The growing prevalence of conversational voice interfaces, powered by developments in both speech and language technologies, raises important questions about their influence on human communication. While written communication can signal identity through lexical and stylistic choices, voice-based interactions inherently amplify socioindexical elements - such as accent, intonation, and speech style - which more prominently convey social identity and group affiliation. There is evidence that even passive media such as television is likely to influence the audience's linguistic patterns. Unlike passive media, conversational AI is interactive, creating a more immersive and reciprocal dynamic that holds a greater potential to impact how individuals speak in everyday interactions. Such heightened influence can be expected to arise from phenomena such as acoustic-prosodic entrainment and linguistic accommodation, which occur naturally during interaction and enable users to adapt their speech patterns in response to the system. While this phenomenon is still emerging, its potential societal impact could provide organisations, movements, and brands with a subtle yet powerful avenue for shaping and controlling public perception and social identity. We argue that the socioindexical influence of AI-generated speech warrants attention and should become a focus of interdisciplinary research, leveraging new and existing methodologies and technologies to better understand its implications.
* 5 pages, 0 figures, International Workshop on Spoken Dialogue Systems
Technology (IWSDS) 2025
Via
