Sentiment analysis is the process of determining the sentiment of a piece of text, such as a tweet or a review.
Test-Time Adaptation (TTA) enables pre-trained models to adjust to distribution shift by learning from unlabeled test-time streams. However, existing methods typically treat these streams as independent samples, overlooking the supervisory signal inherent in temporal dynamics. To address this, we introduce Order-Aware Test-Time Adaptation (OATTA). We formulate test-time adaptation as a gradient-free recursive Bayesian estimation task, using a learned dynamic transition matrix as a temporal prior to refine the base model's predictions. To ensure safety in weakly structured streams, we introduce a likelihood-ratio gate (LLR) that reverts to the base predictor when temporal evidence is absent. OATTA is a lightweight, model-agnostic module that incurs negligible computational overhead. Extensive experiments across image classification, wearable and physiological signal analysis, and language sentiment analysis demonstrate its universality; OATTA consistently boosts established baselines, improving accuracy by up to 6.35%. Our findings establish that modeling temporal dynamics provides a critical, orthogonal signal beyond standard order-agnostic TTA approaches.
Decoding emotion from brain activity could unlock a deeper understanding of the human experience. While a number of existing datasets align brain data with speech and with speech transcripts, no datasets have annotated brain data with sentiment. To bridge this gap, we explore the use of pre-trained Text-to-Sentiment models to annotate non invasive brain recordings, acquired using magnetoencephalography (MEG), while participants listened to audiobooks. Having annotated the text, we employ force-alignment of the text and audio to align our sentiment labels with the brain recordings. It is straightforward then to train Brainto-Sentiment models on these data. Experimental results show an improvement in balanced accuracy for Brain-to-Sentiment compared to baseline, supporting the proposed approach as a proof-of-concept for leveraging existing MEG datasets and learning to decode sentiment directly from the brain.
Sentiment analysis for the Bengali language has attracted increasing research interest in recent years. However, progress remains constrained by the scarcity of large-scale and diverse annotated datasets. Although several Bengali sentiment and hate speech datasets are publicly available, most are limited in size or confined to a single domain, such as social media comments. Consequently, these resources are often insufficient for training modern deep learning based models, which require large volumes of heterogeneous data to learn robust and generalizable representations. In this work, we introduce BengaliSent140, a large-scale Bengali binary sentiment dataset constructed by consolidating seven existing Bengali text datasets into a unified corpus. To ensure consistency across sources, heterogeneous annotation schemes are systematically harmonized into a binary sentiment formulation with two classes: Not Hate (0) and Hate (1). The resulting dataset comprises 139,792 unique text samples, including 68,548 hate and 71,244 not-hate instances, yielding a relatively balanced class distribution. By integrating data from multiple sources and domains, BengaliSent140 offers broader linguistic and contextual coverage than existing Bengali sentiment datasets and provides a strong foundation for training and benchmarking deep learning models. Baseline experimental results are also reported to demonstrate the practical usability of the dataset. The dataset is publicly available at https://www.kaggle.com/datasets/akifislam/bengalisent140/
This study introduces an AI-based methodology that utilizes natural language processing (NLP) to detect burnout from textual data. The approach relies on a RuBERT model originally trained for sentiment analysis and subsequently fine-tuned for burnout detection using two data sources: synthetic sentences generated with ChatGPT and user comments collected from Russian YouTube videos about burnout. The resulting model assigns a burnout probability to input texts and can be applied to process large volumes of written communication for monitoring burnout-related language signals in high-stress work environments.
In this paper, we introduce an Adaptive Graph Signal Processing with Dynamic Semantic Alignment (AGSP DSA) framework to perform robust multimodal data fusion over heterogeneous sources, including text, audio, and images. The requested approach uses a dual-graph construction to learn both intra-modal and inter-modal relations, spectral graph filtering to boost the informative signals, and effective node embedding with Multi-scale Graph Convolutional Networks (GCNs). Semantic aware attention mechanism: each modality may dynamically contribute to the context with respect to contextual relevance. The experimental outcomes on three benchmark datasets, including CMU-MOSEI, AVE, and MM-IMDB, show that AGSP-DSA performs as the state of the art. More precisely, it achieves 95.3% accuracy, 0.936 F1-score, and 0.924 mAP on CMU-MOSEI, improving MM-GNN by 2.6 percent in accuracy. It gets 93.4% accuracy and 0.911 F1-score on AVE and 91.8% accuracy and 0.886 F1-score on MM-IMDB, which demonstrate good generalization and robustness in the missing modality setting. These findings verify the efficiency of AGSP-DSA in promoting multimodal learning in sentiment analysis, event recognition and multimedia classification.
This paper addresses stock price movement prediction by leveraging LLM-based news sentiment analysis. Earlier works have largely focused on proposing and assessing sentiment analysis models and stock movement prediction methods, however, separately. Although promising results have been achieved, a clear and in-depth understanding of the benefit of the news sentiment to this task, as well as a comprehensive assessment of different architecture types in this context, is still lacking. Herein, we conduct an evaluation study that compares 3 different LLMs, namely, DeBERTa, RoBERTa and FinBERT, for sentiment-driven stock prediction. Our results suggest that DeBERTa outperforms the other two models with an accuracy of 75% and that an ensemble model that combines the three models can increase the accuracy to about 80%. Also, we see that sentiment news features can benefit (slightly) some stock market prediction models, i.e., LSTM-, PatchTST- and tPatchGNN-based classifiers and PatchTST- and TimesNet-based regression tasks models.
Large language models (LLMs) are increasingly used for emotional support and mental health-related interactions outside clinical settings, yet little is known about how people evaluate and relate to these systems in everyday use. We analyze 5,126 Reddit posts from 47 mental health communities describing experiential or exploratory use of AI for emotional support or therapy. Grounded in the Technology Acceptance Model and therapeutic alliance theory, we develop a theory-informed annotation framework and apply a hybrid LLM-human pipeline to analyze evaluative language, adoption-related attitudes, and relational alignment at scale. Our results show that engagement is shaped primarily by narrated outcomes, trust, and response quality, rather than emotional bond alone. Positive sentiment is most strongly associated with task and goal alignment, while companionship-oriented use more often involves misaligned alliances and reported risks such as dependence and symptom escalation. Overall, this work demonstrates how theory-grounded constructs can be operationalized in large-scale discourse analysis and highlights the importance of studying how users interpret language technologies in sensitive, real-world contexts.
Multimodal Sentiment Analysis integrates Linguistic, Visual, and Acoustic. Mainstream approaches based on modality-invariant and modality-specific factorization or on complex fusion still rely on spatiotemporal mixed modeling. This ignores spatiotemporal heterogeneity, leading to spatiotemporal information asymmetry and thus limited performance. Hence, we propose TSDA, Temporal-Spatial Decouple before Act, which explicitly decouples each modality into temporal dynamics and spatial structural context before any interaction. For every modality, a temporal encoder and a spatial encoder project signals into separate temporal and spatial body. Factor-Consistent Cross-Modal Alignment then aligns temporal features only with their temporal counterparts across modalities, and spatial features only with their spatial counterparts. Factor specific supervision and decorrelation regularization reduce cross factor leakage while preserving complementarity. A Gated Recouple module subsequently recouples the aligned streams for task. Extensive experiments show that TSDA outperforms baselines. Ablation analysis studies confirm the necessity and interpretability of the design.
Large Language Model (LLM) Agents are advancing quickly, with the increasing leveraging of LLM Agents to assist in development tasks such as code generation. While LLM Agents accelerate code generation, studies indicate they may introduce adverse effects on development. However, existing metrics solely measure pass rates, failing to reflect impacts on long-term maintainability and readability, and failing to capture human intuitive evaluations of PR. To increase the comprehensiveness of this problem, we investigate and evaluate the characteristics of LLM to know the pull requests' characteristics beyond the pass rate. We observe the code quality and maintainability within PRs based on code metrics to evaluate objective characteristics and developers' reactions to the pull requests from both humans and LLM's generation. Evaluation results indicate that LLM Agents frequently disregard code reuse opportunities, resulting in higher levels of redundancy compared to human developers. In contrast to the quality issues, our emotions analysis reveals that reviewers tend to express more neutral or positive emotions towards AI-generated contributions than human ones. This disconnect suggests that the surface-level plausibility of AI code masks redundancy, leading to the silent accumulation of technical debt in real-world development environments. Our research provides insights for improving human-AI collaboration.
Fine-grained opinion analysis of text provides a detailed understanding of expressed sentiments, including the addressed entity. Although this level of detail is sound, it requires considerable human effort and substantial cost to annotate opinions in datasets for training models, especially across diverse domains and real-world applications. We explore the feasibility of LLMs as automatic annotators for fine-grained opinion analysis, addressing the shortage of domain-specific labelled datasets. In this work, we use a declarative annotation pipeline. This approach reduces the variability of manual prompt engineering when using LLMs to identify fine-grained opinion spans in text. We also present a novel methodology for an LLM to adjudicate multiple labels and produce final annotations. After trialling the pipeline with models of different sizes for the Aspect Sentiment Triplet Extraction (ASTE) and Aspect-Category-Opinion-Sentiment (ACOS) analysis tasks, we show that LLMs can serve as automatic annotators and adjudicators, achieving high Inter-Annotator Agreement across individual LLM-based annotators. This reduces the cost and human effort needed to create these fine-grained opinion-annotated datasets.