Abstract:Though Explainable AI (XAI) has made significant advancements, its inclusion in edge and IoT systems is typically ad-hoc and inefficient. Most current methods are "coupled" in such a way that they generate explanations simultaneously with model inferences. As a result, these approaches incur redundant computation, high latency and poor scalability when deployed across heterogeneous sets of edge devices. In this work we propose Explainability-as-a-Service (XaaS), a distributed architecture for treating explainability as a first-class system service (as opposed to a model-specific feature). The key innovation in our proposed XaaS architecture is that it decouples inference from explanation generation allowing edge devices to request, cache and verify explanations subject to resource and latency constraints. To achieve this, we introduce three main innovations: (1) A distributed explanation cache with a semantic similarity based explanation retrieval method which significantly reduces redundant computation; (2) A lightweight verification protocol that ensures the fidelity of both cached and newly generated explanations; and (3) An adaptive explanation engine that chooses explanation methods based upon device capability and user requirement. We evaluated the performance of XaaS on three real-world edge-AI use cases: (i) manufacturing quality control; (ii) autonomous vehicle perception; and (iii) healthcare diagnostics. Experimental results show that XaaS reduces latency by 38\% while maintaining high explanation quality across three real-world deployments. Overall, this work enables the deployment of transparent and accountable AI across large scale, heterogeneous IoT systems, and bridges the gap between XAI research and edge-practicality.
Abstract:As Industrial Internet of Things (IIoT) environments expand to include tens of thousands of connected devices. The centralization of security monitoring architectures creates serious latency issues that savvy attackers can exploit to compromise an entire manufacturing ecosystem. This paper outlines a new, decentralized multi-agent swarm (DMAS) architecture that includes autonomous artificial intelligence (AI) agents at each edge gateway, functioning as a distributed digital "immune system" for IIoT networks. Instead of using a traditional static firewall approach, the DMAS agents communicate via a lightweight peer-to-peer protocol to cooperatively detect anomalous behavior across the IIoT network without sending data to a cloud infrastructure. The authors also outline a consensus-based threat validation (CVT) process in which agents vote on the threat level of an identified threat, enabling instant quarantine of a compromised node or nodes. The authors conducted experiments on a testbed that simulated an innovative factory environment with 2000 IIoT devices and found that the DMAS demonstrated sub-millisecond response times (average of 0.85ms), 97.3% accuracy in detecting malicious activity under high load, and 87% accuracy in detecting zero-day attacks. All significantly higher than baseline values for both centralized and edge computing. Additionally, the proposed architecture can prevent real-time cascading failures in industrial control systems and reduce network bandwidth use by 89% compared to cloud-based solutions.
Abstract:Automated negotiations in insurance and business-to-business (B2B) commerce encounter substantial challenges. Current systems force a trade-off between convenience and privacy by routing sensitive financial data through centralized servers, increasing security risks, and diminishing user trust. This study introduces a device-native autonomous Artificial Intelligence (AI) agent system for privacy-preserving negotiations. The proposed system operates exclusively on user hardware, enabling real-time bargaining while maintaining sensitive constraints locally. It integrates zero-knowledge proofs to ensure privacy and employs distilled world models to support advanced on-device reasoning. The architecture incorporates six technical components within an agentic AI workflow. Agents autonomously plan negotiation strategies, conduct secure multi-party bargaining, and generate cryptographic audit trails without exposing user data to external servers. The system is evaluated in insurance and B2B procurement scenarios across diverse device configurations. Results show an average success rate of 87%, a 2.4x latency improvement over cloud baselines, and strong privacy preservation through zero-knowledge proofs. User studies show 27% higher trust scores when decision trails are available. These findings establish a foundation for trustworthy autonomous agents in privacy-sensitive financial domains.
Abstract:Recent attacks on critical infrastructure, including the 2021 Oldsmar water treatment breach and 2023 Danish energy sector compromises, highlight urgent security gaps in Industrial IoT (IIoT) deployments. While Federated Learning (FL) enables privacy-preserving collaborative intrusion detection, existing frameworks remain vulnerable to Byzantine poisoning attacks and lack robust agent authentication. We propose Zero-Trust Agentic Federated Learning (ZTA-FL), a defense in depth framework combining: (1) TPM-based cryptographic attestation achieving less than 0.0000001 false acceptance rate, (2) a novel SHAP-weighted aggregation algorithm providing explainable Byzantine detection under non-IID conditions with theoretical guarantees, and (3) privacy-preserving on-device adversarial training. Comprehensive experiments across three IDS benchmarks (Edge-IIoTset, CIC-IDS2017, UNSW-NB15) demonstrate that ZTA-FL achieves 97.8 percent detection accuracy, 93.2 percent accuracy under 30 percent Byzantine attacks (outperforming FLAME by 3.1 percent, p less than 0.01), and 89.3 percent adversarial robustness while reducing communication overhead by 34 percent. We provide theoretical analysis, failure mode characterization, and release code for reproducibility.
Abstract:Detection-based security fails against sophisticated attackers using encryption, stealth, and low-rate techniques, particularly in IoT/edge environments where resource constraints preclude ML-based intrusion detection. We present Economic Denial Security (EDS), a detection-independent framework that makes attacks economically infeasible by exploiting a fundamental asymmetry: defenders control their environment while attackers cannot. EDS composes four mechanisms adaptive computational puzzles, decoy-driven interaction entropy, temporal stretching, and bandwidth taxation achieving provably superlinear cost amplification. We formalize EDS as a Stackelberg game, deriving closed-form equilibria for optimal parameter selection (Theorem 1) and proving that mechanism composition yields 2.1x greater costs than the sum of individual mechanisms (Theorem 2). EDS requires < 12KB memory, enabling deployment on ESP32 class microcontrollers. Evaluation on a 20-device heterogeneous IoT testbed across four attack scenarios (n = 30 trials, p < 0.001) demonstrates: 32-560x attack slowdown, 85-520:1 cost asymmetry, 8-62% attack success reduction, < 20ms latency overhead, and close to 0% false positives. Validation against IoT-23 malware (Mirai, Torii, Hajime) shows 88% standalone mitigation; combined with ML-IDS, EDS achieves 94% mitigation versus 67% for IDS alone a 27% improvement. EDS provides detection-independent protection suitable for resource-constrained environments where traditional approaches fail. The ability to detect and mitigate the malware samples tested was enhanced; however, the benefits provided by EDS were realized even without the inclusion of an IDS. Overall, the implementation of EDS serves to shift the economic balance in favor of the defender and provides a viable method to protect IoT and edge systems methodologies.
Abstract:Financial sentiment analysis enhances market understanding; however, standard natural language processing approaches encounter significant challenges when applied to small datasets. This study provides a comparative evaluation of embedding-based methods for financial news sentiment classification in resource-constrained environments. Word2Vec, GloVe, and sentence transformer representations are evaluated in combination with gradient boosting on manually labeled headlines. Experimental results identify a substantial gap between validation and test performance, with models performing worse than trivial baselines despite strong validation metrics. The analysis demonstrates that pretrained embeddings yield diminishing returns below a critical data sufficiency threshold, and that small validation sets contribute to overfitting during model selection. Practical application is illustrated through weekly sentiment aggregation and narrative summarization for market monitoring workflows. The findings offer empirical evidence that embedding quality alone cannot address fundamental data scarcity in sentiment classification. For practitioners operating with limited resources, the results indicate the need to consider alternative approaches such as few-shot learning, data augmentation, or lexicon-enhanced hybrid methods when labeled samples are scarce.