Facial recognition is an AI-based technique for identifying or confirming an individual's identity using their face. It maps facial features from an image or video and then compares the information with a collection of known faces to find a match.
In the domain of facial recognition security, multimodal Face Anti-Spoofing (FAS) is essential for countering presentation attacks. However, existing technologies encounter challenges due to modality biases and imbalances, as well as domain shifts. Our research introduces a Mixture of Experts (MoE) model to address these issues effectively. We identified three limitations in traditional MoE approaches to multimodal FAS: (1) Coarse-grained experts' inability to capture nuanced spoofing indicators; (2) Gated networks' susceptibility to input noise affecting decision-making; (3) MoE's sensitivity to prompt tokens leading to overfitting with conventional learning methods. To mitigate these, we propose the Bypass Isolated Gating MoE (BIG-MoE) framework, featuring: (1) Fine-grained experts for enhanced detection of subtle spoofing cues; (2) An isolation gating mechanism to counteract input noise; (3) A novel differential convolutional prompt bypass enriching the gating network with critical local features, thereby improving perceptual capabilities. Extensive experiments on four benchmark datasets demonstrate significant generalization performance improvement in multimodal FAS task. The code is released at https://github.com/murInJ/BIG-MoE.




Human emotions entail a complex set of behavioral, physiological and cognitive changes. Current state-of-the-art models fuse the behavioral and physiological components using classic machine learning, rather than recent deep learning techniques. We propose to fill this gap, designing the Multimodal for Video and Physio (MVP) architecture, streamlined to fuse video and physiological signals. Differently then others approaches, MVP exploits the benefits of attention to enable the use of long input sequences (1-2 minutes). We have studied video and physiological backbones for inputting long sequences and evaluated our method with respect to the state-of-the-art. Our results show that MVP outperforms former methods for emotion recognition based on facial videos, EDA, and ECG/PPG.




In the age of AI-driven generative technologies, traditional biometric recognition systems face unprecedented challenges, particularly from sophisticated deepfake and face reenactment techniques. In this study, we propose a Two-Stream Spatial-Temporal Transformer Framework for person identification using upper body keypoints visible during online conversations, which we term conversational keypoints. Our framework processes both spatial relationships between keypoints and their temporal evolution through two specialized branches: a Spatial Transformer (STR) that learns distinctive structural patterns in keypoint configurations, and a Temporal Transformer (TTR) that captures sequential motion patterns. Using the state-of-the-art Sapiens pose estimator, we extract 133 keypoints (based on COCO-WholeBody format) representing facial features, head pose, and hand positions. The framework was evaluated on a dataset of 114 individuals engaged in natural conversations, achieving recognition accuracies of 80.12% for the spatial stream, 63.61% for the temporal stream. We then explored two fusion strategies: a shared loss function approach achieving 82.22% accuracy, and a feature-level fusion method that concatenates feature maps from both streams, significantly improving performance to 94.86%. By jointly modeling both static anatomical relationships and dynamic movement patterns, our approach learns comprehensive identity signatures that are more robust to spoofing than traditional appearance-based methods.




This study demonstrates a novel approach to facial camouflage that combines targeted cosmetic perturbations and alpha transparency layer manipulation to evade modern facial recognition systems. Unlike previous methods -- such as CV dazzle, adversarial patches, and theatrical disguises -- this work achieves effective obfuscation through subtle modifications to key-point regions, particularly the brow, nose bridge, and jawline. Empirical testing with Haar cascade classifiers and commercial systems like BetaFaceAPI and Microsoft Bing Visual Search reveals that vertical perturbations near dense facial key points significantly disrupt detection without relying on overt disguises. Additionally, leveraging alpha transparency attacks in PNG images creates a dual-layer effect: faces remain visible to human observers but disappear in machine-readable RGB layers, rendering them unidentifiable during reverse image searches. The results highlight the potential for creating scalable, low-visibility facial obfuscation strategies that balance effectiveness and subtlety, opening pathways for defeating surveillance while maintaining plausible anonymity.
In this paper, a novel dataset is introduced, designed to assess student attention within in-person classroom settings. This dataset encompasses RGB camera data, featuring multiple cameras per student to capture both posture and facial expressions, in addition to smartwatch sensor data for each individual. This dataset allows machine learning algorithms to be trained to predict attention and correlate it with emotion. A comprehensive suite of attention and emotion labels for each student is provided, generated through self-reporting as well as evaluations by four different experts. Our dataset uniquely combines facial and environmental camera data, smartwatch metrics, and includes underrepresented ethnicities in similar datasets, all within in-the-wild, in-person settings, making it the most comprehensive dataset of its kind currently available. The dataset presented offers an extensive and diverse collection of data pertaining to student interactions across different educational contexts, augmented with additional metadata from other tools. This initiative addresses existing deficiencies by offering a valuable resource for the analysis of student attention and emotion in face-to-face lessons.
Suffering from performance bottlenecks in passively detecting high-quality Deepfake images due to the advancement of generative models, proactive perturbations offer a promising approach to disabling Deepfake manipulations by inserting signals into benign images. However, existing proactive perturbation approaches remain unsatisfactory in several aspects: 1) visual degradation due to direct element-wise addition; 2) limited effectiveness against face swapping manipulation; 3) unavoidable reliance on white- and grey-box settings to involve generative models during training. In this study, we analyze the essence of Deepfake face swapping and argue the necessity of protecting source identities rather than target images, and we propose NullSwap, a novel proactive defense approach that cloaks source image identities and nullifies face swapping under a pure black-box scenario. We design an Identity Extraction module to obtain facial identity features from the source image, while a Perturbation Block is then devised to generate identity-guided perturbations accordingly. Meanwhile, a Feature Block extracts shallow-level image features, which are then fused with the perturbation in the Cloaking Block for image reconstruction. Furthermore, to ensure adaptability across different identity extractors in face swapping algorithms, we propose Dynamic Loss Weighting to adaptively balance identity losses. Experiments demonstrate the outstanding ability of our approach to fool various identity recognition models, outperforming state-of-the-art proactive perturbations in preventing face swapping models from generating images with correct source identities.




Face recognition (FR) models are vulnerable to performance variations across demographic groups. The causes for these performance differences are unclear due to the highly complex deep learning-based structure of face recognition models. Several works aimed at exploring possible roots of gender and ethnicity bias, identifying semantic reasons such as hairstyle, make-up, or facial hair as possible sources. Motivated by recent discoveries of the importance of frequency patterns in convolutional neural networks, we explain bias in face recognition using state-of-the-art frequency-based explanations. Our extensive results show that different frequencies are important to FR models depending on the ethnicity of the samples.
The field of affective computing has seen significant advancements in exploring the relationship between emotions and emerging technologies. This paper presents a novel and valuable contribution to this field with the introduction of a comprehensive French multimodal dataset designed specifically for emotion recognition. The dataset encompasses three primary modalities: facial expressions, speech, and gestures, providing a holistic perspective on emotions. Moreover, the dataset has the potential to incorporate additional modalities, such as Natural Language Processing (NLP) to expand the scope of emotion recognition research. The dataset was curated through engaging participants in card game sessions, where they were prompted to express a range of emotions while responding to diverse questions. The study included 10 sessions with 20 participants (9 females and 11 males). The dataset serves as a valuable resource for furthering research in emotion recognition and provides an avenue for exploring the intricate connections between human emotions and digital technologies.




Face anti-spoofing (FAS) plays a pivotal role in ensuring the security and reliability of face recognition systems. With advancements in vision-language pretrained (VLP) models, recent two-class FAS techniques have leveraged the advantages of using VLP guidance, while this potential remains unexplored in one-class FAS methods. The one-class FAS focuses on learning intrinsic liveness features solely from live training images to differentiate between live and spoof faces. However, the lack of spoof training data can lead one-class FAS models to inadvertently incorporate domain information irrelevant to the live/spoof distinction (e.g., facial content), causing performance degradation when tested with a new application domain. To address this issue, we propose a novel framework called Spoof-aware one-class face anti-spoofing with Language Image Pretraining (SLIP). Given that live faces should ideally not be obscured by any spoof-attack-related objects (e.g., paper, or masks) and are assumed to yield zero spoof cue maps, we first propose an effective language-guided spoof cue map estimation to enhance one-class FAS models by simulating whether the underlying faces are covered by attack-related objects and generating corresponding nonzero spoof cue maps. Next, we introduce a novel prompt-driven liveness feature disentanglement to alleviate live/spoof-irrelative domain variations by disentangling live/spoof-relevant and domain-dependent information. Finally, we design an effective augmentation strategy by fusing latent features from live images and spoof prompts to generate spoof-like image features and thus diversify latent spoof features to facilitate the learning of one-class FAS. Our extensive experiments and ablation studies support that SLIP consistently outperforms previous one-class FAS methods.
Considerable effort has been made in privacy-preserving video human activity recognition (HAR). Two primary approaches to ensure privacy preservation in Video HAR are differential privacy (DP) and visual privacy. Techniques enforcing DP during training provide strong theoretical privacy guarantees but offer limited capabilities for visual privacy assessment. Conversely methods, such as low-resolution transformations, data obfuscation and adversarial networks, emphasize visual privacy but lack clear theoretical privacy assurances. In this work, we focus on two main objectives: (1) leveraging DP properties to develop a model-free approach for visual privacy in videos and (2) evaluating our proposed technique using both differential privacy and visual privacy assessments on HAR tasks. To achieve goal (1), we introduce Video-DPRP: a Video-sample-wise Differentially Private Random Projection framework for privacy-preserved video reconstruction for HAR. By using random projections, noise matrices and right singular vectors derived from the singular value decomposition of videos, Video-DPRP reconstructs DP videos using privacy parameters ($\epsilon,\delta$) while enabling visual privacy assessment. For goal (2), using UCF101 and HMDB51 datasets, we compare Video-DPRP's performance on activity recognition with traditional DP methods, and state-of-the-art (SOTA) visual privacy-preserving techniques. Additionally, we assess its effectiveness in preserving privacy-related attributes such as facial features, gender, and skin color, using the PA-HMDB and VISPR datasets. Video-DPRP combines privacy-preservation from both a DP and visual privacy perspective unlike SOTA methods that typically address only one of these aspects.