Topic modeling is a type of statistical modeling for discovering the abstract topics that occur in a collection of documents.
The rapid growth of research literature, particularly in large language models (LLMs), has made producing comprehensive and current survey papers increasingly difficult. This paper introduces autosurvey2, a multi-stage pipeline that automates survey generation through retrieval-augmented synthesis and structured evaluation. The system integrates parallel section generation, iterative refinement, and real-time retrieval of recent publications to ensure both topical completeness and factual accuracy. Quality is assessed using a multi-LLM evaluation framework that measures coverage, structure, and relevance in alignment with expert review standards. Experimental results demonstrate that autosurvey2 consistently outperforms existing retrieval-based and automated baselines, achieving higher scores in structural coherence and topical relevance while maintaining strong citation fidelity. By combining retrieval, reasoning, and automated evaluation into a unified framework, autosurvey2 provides a scalable and reproducible solution for generating long-form academic surveys and contributes a solid foundation for future research on automated scholarly writing. All code and resources are available at https://github.com/annihi1ation/auto_research.
We introduced PerCoR (Persian Commonsense Reasoning), the first large-scale Persian benchmark for commonsense reasoning. PerCoR contains 106K multiple-choice sentence-completion problems drawn from more than forty news, cultural, and other web sources. We introduce a novel conjunction-based segmentation strategy to generate coherent sentence-completion pairs, enabling broad topical and structural diversity. To create challenging distractors, we propose DRESS-AF (Distractor Ranking via Embedding Similarity Scoring and Adversarial Filtering), a generation-free adversarial filtering method that selects distractors from the pool of gold continuations while maximising model confusion. Human annotators score 89% on PerCoR, while OpenAI-o3 achieves the highest performance at 92.18%, followed closely by Claude-Sonnet-3.7 (91.17%). The strongest open-source model, DeepSeek-R1, reaches 82.51%, underscoring both the dataset's difficulty and the remaining performance gap in Persian commonsense reasoning. We further show that DRESS-AF transfers to the English HellaSwag benchmark, increasing its difficulty without hurting human solvability. The dataset is available at https://huggingface.co/datasets/MCINext/PerCoR.




With the rapid growth of research in AI and robotics now producing over 10,000 papers annually it has become increasingly difficult for researchers to stay up to date. Fast evolving trends, the rise of interdisciplinary work, and the need to explore domains beyond one's expertise all contribute to this challenge. To address these issues, we propose a generalizable pipeline capable of systematically analyzing any research area: identifying emerging trends, uncovering cross domain opportunities, and offering concrete starting points for new inquiry. In this work, we present Real Deep Research (RDR) a comprehensive framework applied to the domains of AI and robotics, with a particular focus on foundation models and robotics advancements. We also briefly extend our analysis to other areas of science. The main paper details the construction of the RDR pipeline, while the appendix provides extensive results across each analyzed topic. We hope this work sheds light for researchers working in the field of AI and beyond.




Learning on temporal graphs has become a central topic in graph representation learning, with numerous benchmarks indicating the strong performance of state-of-the-art models. However, recent work has raised concerns about the reliability of benchmark results, noting issues with commonly used evaluation protocols and the surprising competitiveness of simple heuristics. This contrast raises the question of which properties of the underlying graphs temporal graph learning models actually use to form their predictions. We address this by systematically evaluating seven models on their ability to capture eight fundamental attributes related to the link structure of temporal graphs. These include structural characteristics such as density, temporal patterns such as recency, and edge formation mechanisms such as homophily. Using both synthetic and real-world datasets, we analyze how well models learn these attributes. Our findings reveal a mixed picture: models capture some attributes well but fail to reproduce others. With this, we expose important limitations. Overall, we believe that our results provide practical insights for the application of temporal graph learning models, and motivate more interpretability-driven evaluations in temporal graph learning research.
Reporting quality is an important topic in clinical trial research articles, as it can impact clinical decisions. In this article, we test the ability of large language models to assess the reporting quality of this type of article using the Consolidated Standards of Reporting Trials (CONSORT). We create CONSORT-QA, an evaluation corpus from two studies on abstract reporting quality with CONSORT-abstract standards. We then evaluate the ability of different large generative language models (from the general domain or adapted to the biomedical domain) to correctly assess CONSORT criteria with different known prompting methods, including Chain-of-thought. Our best combination of model and prompting method achieves 85% accuracy. Using Chain-of-thought adds valuable information on the model's reasoning for completing the task.




Despite their remarkable capabilities, Large Language Models (LLMs) struggle to effectively leverage historical interaction information in dynamic and complex environments. Memory systems enable LLMs to move beyond stateless interactions by introducing persistent information storage, retrieval, and utilization mechanisms. However, existing memory systems often introduce substantial time and computational overhead. To this end, we introduce a new memory system called LightMem, which strikes a balance between the performance and efficiency of memory systems. Inspired by the Atkinson-Shiffrin model of human memory, LightMem organizes memory into three complementary stages. First, cognition-inspired sensory memory rapidly filters irrelevant information through lightweight compression and groups information according to their topics. Next, topic-aware short-term memory consolidates these topic-based groups, organizing and summarizing content for more structured access. Finally, long-term memory with sleep-time update employs an offline procedure that decouples consolidation from online inference. Experiments on LongMemEval with GPT and Qwen backbones show that LightMem outperforms strong baselines in accuracy (up to 10.9% gains) while reducing token usage by up to 117x, API calls by up to 159x, and runtime by over 12x. The code is available at https://github.com/zjunlp/LightMem.
The unjudged document problem, where pooled test collections have incomplete relevance judgments for evaluating new retrieval systems, is a key obstacle to the reusability of test collections in information retrieval. While the de facto standard to deal with the problem is to treat unjudged documents as non-relevant, many alternatives have been proposed, including the use of large language models (LLMs) as a relevance judge (LLM-as-a-judge). However, this has been criticized as circular, since the same LLM can be used as a judge and as a ranker at the same time. We propose to train topic-specific relevance classifiers instead: By finetuning monoT5 with independent LoRA weight adaptation on the judgments of a single assessor for a single topic's pool, we align it to that assessor's notion of relevance for the topic. The system rankings obtained through our classifier's relevance judgments achieve a Spearmans' $\rho$ correlation of $>0.95$ with ground truth system rankings. As little as 128 initial human judgments per topic suffice to improve the comparability of models, compared to treating unjudged documents as non-relevant, while achieving more reliability than existing LLM-as-a-judge approaches. Topic-specific relevance classifiers thus are a lightweight and straightforward way to tackle the unjudged document problem, while maintaining human judgments as the gold standard for retrieval evaluation. Code, models, and data are made openly available.
Unsupervised analysis of text corpora is challenging, especially in data-scarce domains where traditional topic models struggle. While these models offer a solution, they typically describe clusters with lists of keywords that require significant manual effort to interpret and often lack semantic coherence. To address this critical interpretability gap, we introduce Recursive Thematic Partitioning (RTP), a novel framework that leverages Large Language Models (LLMs) to interactively build a binary tree. Each node in the tree is a natural language question that semantically partitions the data, resulting in a fully interpretable taxonomy where the logic of each cluster is explicit. Our experiments demonstrate that RTP's question-driven hierarchy is more interpretable than the keyword-based topics from a strong baseline like BERTopic. Furthermore, we establish the quantitative utility of these clusters by showing they serve as powerful features in downstream classification tasks, particularly when the data's underlying themes correlate with the task labels. RTP introduces a new paradigm for data exploration, shifting the focus from statistical pattern discovery to knowledge-driven thematic analysis. Furthermore, we demonstrate that the thematic paths from the RTP tree can serve as structured, controllable prompts for generative models. This transforms our analytical framework into a powerful tool for synthesis, enabling the consistent imitation of specific characteristics discovered in the source corpus.
A major field of industrial robot applications deals with repetitive tasks that alternate between operating points. For these so-called pick-and-place operations, parallel kinematic manipulators (PKM) are frequently employed. These tasks tend to automatically run for a long period of time and therefore minimizing energy consumption is always of interest. Recent research addresses this topic by the use of elastic elements and particularly series elastic actuators (SEA). This paper explores the possibilities of minimizing energy consumption of SEA actuated PKM performing pick-and-place tasks. The basic idea is to excite eigenmotions that result from the actuator springs and exploit their oscillating characteristics. To this end, a prescribed cyclic pick-and-place operation is analyzed and a dynamic model of SEA driven PKM is derived. Subsequently, an energy minimizing optimal control problem is formulated where operating trajectories as well as SEA stiffnesses are optimized simultaneously. Here, optimizing the actuator stiffness does not account for variable stiffness actuators. It serves as a tool for the design and dimensioning process. The hypothesis on energy reduction is tested on two (parallel) robot applications where redundant actuation is also addressed. The results confirm the validity of this approach.




In large scale recommendation systems like the LinkedIn Feed, the retrieval stage is critical for narrowing hundreds of millions of potential candidates to a manageable subset for ranking. LinkedIn's Feed serves suggested content from outside of the member's network (based on the member's topical interests), where 2000 candidates are retrieved from a pool of hundreds of millions candidate with a latency budget of a few milliseconds and inbound QPS of several thousand per second. This paper presents a novel retrieval approach that fine-tunes a large causal language model (Meta's LLaMA 3) as a dual encoder to generate high quality embeddings for both users (members) and content (items), using only textual input. We describe the end to end pipeline, including prompt design for embedding generation, techniques for fine-tuning at LinkedIn's scale, and infrastructure for low latency, cost effective online serving. We share our findings on how quantizing numerical features in the prompt enables the information to get properly encoded in the embedding, facilitating greater alignment between the retrieval and ranking layer. The system was evaluated using offline metrics and an online A/B test, which showed substantial improvements in member engagement. We observed significant gains among newer members, who often lack strong network connections, indicating that high-quality suggested content aids retention. This work demonstrates how generative language models can be effectively adapted for real time, high throughput retrieval in industrial applications.