Topic modeling is a type of statistical modeling for discovering the abstract topics that occur in a collection of documents.
Systematic reviews and mapping studies are critical for synthesizing research, identifying gaps, and guiding future work, but they are often labor-intensive and time-consuming. Existing tools provide partial support for specific steps, leaving much of the process manual and error-prone. We present ProfOlaf, a semi-automated tool designed to streamline systematic reviews while maintaining methodological rigor. ProfOlaf supports iterative snowballing for article collection with human-in-the-loop filtering and uses large language models to assist in analyzing articles, extracting key topics, and answering queries about the content of papers. By combining automation with guided manual effort, ProfOlaf enhances the efficiency, quality, and reproducibility of systematic reviews across research fields. A video describing and demonstrating ProfOlaf is available at: https://youtu.be/4noUXfcmxsE
With rapid urbanization in the modern era, traffic signals from various sensors have been playing a significant role in monitoring the states of cities, which provides a strong foundation in ensuring safe travel, reducing traffic congestion and optimizing urban mobility. Most existing methods for traffic signal modeling often rely on the original data modality, i.e., numerical direct readings from the sensors in cities. However, this unimodal approach overlooks the semantic information existing in multimodal heterogeneous urban data in different perspectives, which hinders a comprehensive understanding of traffic signals and limits the accurate prediction of complex traffic dynamics. To address this problem, we propose a novel Multimodal framework, MTP, for urban Traffic Profiling, which learns multimodal features through numeric, visual, and textual perspectives. The three branches drive for a multimodal perspective of urban traffic signal learning in the frequency domain, while the frequency learning strategies delicately refine the information for extraction. Specifically, we first conduct the visual augmentation for the traffic signals, which transforms the original modality into frequency images and periodicity images for visual learning. Also, we augment descriptive texts for the traffic signals based on the specific topic, background information and item description for textual learning. To complement the numeric information, we utilize frequency multilayer perceptrons for learning on the original modality. We design a hierarchical contrastive learning on the three branches to fuse the spectrum of three modalities. Finally, extensive experiments on six real-world datasets demonstrate superior performance compared with the state-of-the-art approaches.
Large Language Models (LLMs) are rapidly being adopted by users across the globe, who interact with them in a diverse range of languages. At the same time, there are well-documented imbalances in the training data and optimisation objectives of this technology, raising doubts as to whether LLMs can represent the cultural diversity of their broad user base. In this study, we look at LLMs and cultural values and examine how prompt language and cultural framing influence model responses and their alignment with human values in different countries. We probe 10 LLMs with 63 items from the Hofstede Values Survey Module and World Values Survey, translated into 11 languages, and formulated as prompts with and without different explicit cultural perspectives. Our study confirms that both prompt language and cultural perspective produce variation in LLM outputs, but with an important caveat: While targeted prompting can, to a certain extent, steer LLM responses in the direction of the predominant values of the corresponding countries, it does not overcome the models' systematic bias toward the values associated with a restricted set of countries in our dataset: the Netherlands, Germany, the US, and Japan. All tested models, regardless of their origin, exhibit remarkably similar patterns: They produce fairly neutral responses on most topics, with selective progressive stances on issues such as social tolerance. Alignment with cultural values of human respondents is improved more with an explicit cultural perspective than with a targeted prompt language. Unexpectedly, combining both approaches is no more effective than cultural framing with an English prompt. These findings reveal that LLMs occupy an uncomfortable middle ground: They are responsive enough to changes in prompts to produce variation, but too firmly anchored to specific cultural defaults to adequately represent cultural diversity.




We target passive dementia screening from short camera-facing talking head video, developing a facial temporal micro dynamics analysis for language free detection of early neuro cognitive change. This enables unscripted, in the wild video analysis at scale to capture natural facial behaviors, transferrable across devices, topics, and cultures without active intervention by clinicians or researchers during recording. Most existing resources prioritize speech or scripted interviews, limiting use outside clinics and coupling predictions to language and transcription. In contrast, we identify and analyze whether temporal facial kinematics, including blink dynamics, small mouth jaw motions, gaze variability, and subtle head adjustments, are sufficient for dementia screening without speech or text. By stabilizing facial signals, we convert these micro movements into interpretable facial microdynamic time series, smooth them, and summarize short windows into compact clip level statistics for screening. Each window is encoded by its activity mix (the relative share of motion across streams), thus the predictor analyzes the distribution of motion across streams rather than its magnitude, making per channel effects transparent. We also introduce YT DemTalk, a new dataset curated from publicly available, in the wild camera facing videos. It contains 300 clips (150 with self reported dementia, 150 controls) to test our model and offer a first benchmarking of the corpus. On YT DemTalk, ablations identify gaze lability and mouth/jaw dynamics as the most informative cues, and light weighted shallow classifiers could attain a dementia prediction performance of (AUROC) 0.953, 0.961 Average Precision (AP), 0.851 F1-score, and 0.857 accuracy.

Amid the growing prevalence of human -- AI interaction, large language models and other AI-based entities increasingly provide forms of companionship to human users. Such AI companionship -- i.e., bonded relationships between humans and AI systems that resemble the relationships people have with family members, friends, and romantic partners -- might substantially benefit humans. Yet such relationships can also do profound harm. We propose a framework for analyzing potential negative impacts of AI companionship by identifying specific harmful traits of AI companions and speculatively mapping causal pathways back from these traits to possible causes and forward to potential harmful effects. We provide detailed, structured analysis of four potentially harmful traits -- the absence of natural endpoints for relationships, vulnerability to product sunsetting, high attachment anxiety, and propensity to engender protectiveness -- and briefly discuss fourteen others. For each trait, we propose hypotheses connecting causes -- such as misaligned optimization objectives and the digital nature of AI companions -- to fundamental harms -- including reduced autonomy, diminished quality of human relationships, and deception. Each hypothesized causal connection identifies a target for potential empirical evaluation. Our analysis examines harms at three levels: to human partners directly, to their relationships with other humans, and to society broadly. We examine how existing law struggles to address these emerging harms, discuss potential benefits of AI companions, and conclude with design recommendations for mitigating risks. This analysis offers immediate suggestions for reducing risks while laying a foundation for deeper investigation of this critical but understudied topic.
Group Activity Recognition (GAR) is well studied on the video modality for surveillance and indoor team sports (e.g., volleyball, basketball). Yet, other modalities such as agent positions and trajectories over time, i.e. tracking, remain comparatively under-explored despite being compact, agent-centric signals that explicitly encode spatial interactions. Understanding whether pixel (video) or position (tracking) modalities leads to better group activity recognition is therefore important to drive further research on the topic. However, no standardized benchmark currently exists that aligns broadcast video and tracking data for the same group activities, leading to a lack of apples-to-apples comparison between these modalities for GAR. In this work, we introduce SoccerNet-GAR, a multimodal dataset built from the $64$ matches of the football World Cup 2022. Specifically, the broadcast videos and player tracking modalities for $94{,}285$ group activities are synchronized and annotated with $10$ categories. Furthermore, we define a unified evaluation protocol to benchmark two strong unimodal approaches: (i) a competitive video-based classifiers and (ii) a tracking-based classifiers leveraging graph neural networks. In particular, our novel role-aware graph architecture for tracking-based GAR directly encodes tactical structure through positional edges and temporal attention. Our tracking model achieves $67.2\%$ balanced accuracy compared to $58.1\%$ for the best video baseline, while training $4.25 \times$ faster with $438 \times$ fewer parameters ($197K$ \vs $86.3M$). This study provides new insights into the relative strengths of pixels and positions for group activity recognition. Overall, it highlights the importance of modality choice and role-aware modeling for GAR.




Vision-language models (VLMs) have demonstrated impressive generalization across multimodal tasks, yet most evaluation benchmarks remain Western-centric, leaving open questions about their performance in culturally diverse and multilingual settings. To address this gap, we introduce IndicVisionBench, the first large-scale benchmark centered on the Indian subcontinent. Covering English and 10 Indian languages, our benchmark spans 3 multimodal tasks, including Optical Character Recognition (OCR), Multimodal Machine Translation (MMT), and Visual Question Answering (VQA), covering 6 kinds of question types. Our final benchmark consists of a total of ~5K images and 37K+ QA pairs across 13 culturally grounded topics. In addition, we release a paired parallel corpus of annotations across 10 Indic languages, creating a unique resource for analyzing cultural and linguistic biases in VLMs. We evaluate a broad spectrum of 8 models, from proprietary closed-source systems to open-weights medium and large-scale models. Our experiments reveal substantial performance gaps, underscoring the limitations of current VLMs in culturally diverse contexts. By centering cultural diversity and multilinguality, IndicVisionBench establishes a reproducible evaluation framework that paves the way for more inclusive multimodal research.




Podcasts have become a central arena for shaping public opinion, making them a vital source for understanding contemporary discourse. Their typically unscripted, multi-themed, and conversational style offers a rich but complex form of data. To analyze how podcasts persuade and inform, we must examine their narrative structures -- specifically, the narrative frames they employ. The fluid and conversational nature of podcasts presents a significant challenge for automated analysis. We show that existing large language models, typically trained on more structured text such as news articles, struggle to capture the subtle cues that human listeners rely on to identify narrative frames. As a result, current approaches fall short of accurately analyzing podcast narratives at scale. To solve this, we develop and evaluate a fine-tuned BERT model that explicitly links narrative frames to specific entities mentioned in the conversation, effectively grounding the abstract frame in concrete details. Our approach then uses these granular frame labels and correlates them with high-level topics to reveal broader discourse trends. The primary contributions of this paper are: (i) a novel frame-labeling methodology that more closely aligns with human judgment for messy, conversational data, and (ii) a new analysis that uncovers the systematic relationship between what is being discussed (the topic) and how it is being presented (the frame), offering a more robust framework for studying influence in digital media.
Large language models (LLMs) are increasingly used in the social sciences to simulate human behavior, based on the assumption that they can generate realistic, human-like text. Yet this assumption remains largely untested. Existing validation efforts rely heavily on human-judgment-based evaluations -- testing whether humans can distinguish AI from human output -- despite evidence that such judgments are blunt and unreliable. As a result, the field lacks robust tools for assessing the realism of LLM-generated text or for calibrating models to real-world data. This paper makes two contributions. First, we introduce a computational Turing test: a validation framework that integrates aggregate metrics (BERT-based detectability and semantic similarity) with interpretable linguistic features (stylistic markers and topical patterns) to assess how closely LLMs approximate human language within a given dataset. Second, we systematically compare nine open-weight LLMs across five calibration strategies -- including fine-tuning, stylistic prompting, and context retrieval -- benchmarking their ability to reproduce user interactions on X (formerly Twitter), Bluesky, and Reddit. Our findings challenge core assumptions in the literature. Even after calibration, LLM outputs remain clearly distinguishable from human text, particularly in affective tone and emotional expression. Instruction-tuned models underperform their base counterparts, and scaling up model size does not enhance human-likeness. Crucially, we identify a trade-off: optimizing for human-likeness often comes at the cost of semantic fidelity, and vice versa. These results provide a much-needed scalable framework for validation and calibration in LLM simulations -- and offer a cautionary note about their current limitations in capturing human communication.
While a multi-agent approach based on large language models (LLMs) represents a promising strategy to surpass the capabilities of single models, its success is critically dependent on synergistic team composition. However, forming optimal teams is a significant challenge, as the inherent opacity of most models obscures the internal characteristics necessary for effective collaboration. In this paper, we propose an interaction-centric framework for automatic team composition that does not require any prior knowledge including their internal architectures, training data, or task performances. Our method constructs a "language model graph" that maps relationships between models from the semantic coherence of pairwise conversations, and then applies community detection to identify synergistic model clusters. Our experiments with diverse LLMs demonstrate that the proposed method discovers functionally coherent groups that reflect their latent specializations. Priming conversations with specific topics identified synergistic teams which outperform random baselines on downstream benchmarks and achieve comparable accuracy to that of manually-curated teams based on known model specializations. Our findings provide a new basis for the automated design of collaborative multi-agent LLM teams.