Topic modeling is a type of statistical modeling for discovering the abstract topics that occur in a collection of documents.
Prediction uncertainty quantification is a key research topic in recent years scientific and business problems. In insurance industries (\cite{parodi2023pricing}), assessing the range of possible claim costs for individual drivers improves premium pricing accuracy. It also enables insurers to manage risk more effectively by accounting for uncertainty in accident likelihood and severity. In the presence of covariates, a variety of regression-type models are often used for modeling insurance claims, ranging from relatively simple generalized linear models (GLMs) to regularized GLMs to gradient boosting models (GBMs). Conformal predictive inference has arisen as a popular distribution-free approach for quantifying predictive uncertainty under relatively weak assumptions of exchangeability, and has been well studied under the classic linear regression setting. In this work, we propose new non-conformity measures for GLMs and GBMs with GLM-type loss. Using regularized Tweedie GLM regression and LightGBM with Tweedie loss, we demonstrate conformal prediction performance with these non-conformity measures in insurance claims data. Our simulation results favor the use of locally weighted Pearson residuals for LightGBM over other methods considered, as the resulting intervals maintained the nominal coverage with the smallest average width.
With the recent rise of generative Artificial Intelligence (AI), the need of selecting high-quality dataset to improve machine learning models has garnered increasing attention. However, some part of this topic remains underexplored, even for simple prediction models. In this work, we study the problem of developing practical algorithms that select appropriate dataset to minimize population loss of our prediction model with high probability. Broadly speaking, we investigate when datasets from different sources can be effectively merged to enhance the predictive model's performance, and propose a practical algorithm with theoretical guarantees. By leveraging an oracle inequality and data-driven estimators, the algorithm reduces population loss with high probability. Numerical experiments demonstrate its effectiveness in both standard linear regression and broader machine learning applications. Code is available at https://github.com/kkrokii/collaborative_prediction.
The scientific computation methods development in conjunction with artificial intelligence technologies remains a hot research topic. Finding a balance between lightweight and accurate computations is a solid foundation for this direction. The study presents a neural operator based on the dynamic mode decomposition algorithm (DMD), mapping functional spaces, which combines DMD and deep learning (DL) for spatiotemporal processes efficient modeling. Solving PDEs for various initial and boundary conditions requires significant computational resources. The method suggested automatically extracts key modes and system dynamics using them to construct predictions, reducing computational costs compared to traditional numerical methods. The approach has demonstrated its efficiency through comparative analysis of performance with closest analogues DeepONet and FNO in the heat equation, Laplaces equation, and Burgers equation solutions approximation, where it achieves high reconstruction accuracy.
Large Language Models (LLMs) have shown strong performance across many tasks, but their ability to capture culturally diverse moral values remains unclear. In this paper, we examine whether LLMs can mirror variations in moral attitudes reported by two major cross-cultural surveys: the World Values Survey and the PEW Research Center's Global Attitudes Survey. We compare smaller, monolingual, and multilingual models (GPT-2, OPT, BLOOMZ, and Qwen) with more recent instruction-tuned models (GPT-4o, GPT-4o-mini, Gemma-2-9b-it, and Llama-3.3-70B-Instruct). Using log-probability-based moral justifiability scores, we correlate each model's outputs with survey data covering a broad set of ethical topics. Our results show that many earlier or smaller models often produce near-zero or negative correlations with human judgments. In contrast, advanced instruction-tuned models (including GPT-4o and GPT-4o-mini) achieve substantially higher positive correlations, suggesting they better reflect real-world moral attitudes. While scaling up model size and using instruction tuning can improve alignment with cross-cultural moral norms, challenges remain for certain topics and regions. We discuss these findings in relation to bias analysis, training data diversity, and strategies for improving the cultural sensitivity of LLMs.
Documents are fundamental to preserving and disseminating information, often incorporating complex layouts, tables, and charts that pose significant challenges for automatic document understanding (DU). While vision-language large models (VLLMs) have demonstrated improvements across various tasks, their effectiveness in processing long-context vision inputs remains unclear. This paper introduces WikiMixQA, a benchmark comprising 1,000 multiple-choice questions (MCQs) designed to evaluate cross-modal reasoning over tables and charts extracted from 4,000 Wikipedia pages spanning seven distinct topics. Unlike existing benchmarks, WikiMixQA emphasizes complex reasoning by requiring models to synthesize information from multiple modalities. We evaluate 12 state-of-the-art vision-language models, revealing that while proprietary models achieve ~70% accuracy when provided with direct context, their performance deteriorates significantly when retrieval from long documents is required. Among these, GPT-4-o is the only model exceeding 50% accuracy in this setting, whereas open-source models perform considerably worse, with a maximum accuracy of 27%. These findings underscore the challenges of long-context, multi-modal reasoning and establish WikiMixQA as a crucial benchmark for advancing document understanding research.
The running-time analysis of evolutionary combinatorial optimization is a fundamental topic in evolutionary computation. However, theoretical results regarding the $(\mu+\lambda)$ evolutionary algorithm (EA) for combinatorial optimization problems remain relatively scarce compared to those for simple pseudo-Boolean problems. This paper proposes a multiple-gain model to analyze the running time of EAs for combinatorial optimization problems. The proposed model is an improved version of the average gain model, which is a fitness-difference drift approach under the sigma-algebra condition to estimate the running time of evolutionary numerical optimization. The improvement yields a framework for estimating the expected first hitting time of a stochastic process in both average-case and worst-case scenarios. It also introduces novel running-time results of evolutionary combinatorial optimization, including two tighter time complexity upper bounds than the known results in the case of ($\mu+\lambda$) EA for the knapsack problem with favorably correlated weights, a closed-form expression of time complexity upper bound in the case of ($\mu+\lambda$) EA for general $k$-MAX-SAT problems and a tighter time complexity upper bounds than the known results in the case of ($\mu+\lambda$) EA for the traveling salesperson problem. Experimental results indicate that the practical running time aligns with the theoretical results, verifying that the multiple-gain model is an effective tool for running-time analysis of ($\mu+\lambda$) EA for combinatorial optimization problems.
The recent development and wider accessibility of LLMs have spurred discussions about how they can be used in survey research, including classifying open-ended survey responses. Due to their linguistic capacities, it is possible that LLMs are an efficient alternative to time-consuming manual coding and the pre-training of supervised machine learning models. As most existing research on this topic has focused on English-language responses relating to non-complex topics or on single LLMs, it is unclear whether its findings generalize and how the quality of these classifications compares to established methods. In this study, we investigate to what extent different LLMs can be used to code open-ended survey responses in other contexts, using German data on reasons for survey participation as an example. We compare several state-of-the-art LLMs and several prompting approaches, and evaluate the LLMs' performance by using human expert codings. Overall performance differs greatly between LLMs, and only a fine-tuned LLM achieves satisfactory levels of predictive performance. Performance differences between prompting approaches are conditional on the LLM used. Finally, LLMs' unequal classification performance across different categories of reasons for survey participation results in different categorical distributions when not using fine-tuning. We discuss the implications of these findings, both for methodological research on coding open-ended responses and for their substantive analysis, and for practitioners processing or substantively analyzing such data. Finally, we highlight the many trade-offs researchers need to consider when choosing automated methods for open-ended response classification in the age of LLMs. In doing so, our study contributes to the growing body of research about the conditions under which LLMs can be efficiently, accurately, and reliably leveraged in survey research.
Event stream based scene text recognition is a newly arising research topic in recent years which performs better than the widely used RGB cameras in extremely challenging scenarios, especially the low illumination, fast motion. Existing works either adopt end-to-end encoder-decoder framework or large language models for enhanced recognition, however, they are still limited by the challenges of insufficient interpretability and weak contextual logical reasoning. In this work, we propose a novel chain-of-thought reasoning based event stream scene text recognition framework, termed ESTR-CoT. Specifically, we first adopt the vision encoder EVA-CLIP (ViT-G/14) to transform the input event stream into tokens and utilize a Llama tokenizer to encode the given generation prompt. A Q-former is used to align the vision token to the pre-trained large language model Vicuna-7B and output both the answer and chain-of-thought (CoT) reasoning process simultaneously. Our framework can be optimized using supervised fine-tuning in an end-to-end manner. In addition, we also propose a large-scale CoT dataset to train our framework via a three stage processing (i.e., generation, polish, and expert verification). This dataset provides a solid data foundation for the development of subsequent reasoning-based large models. Extensive experiments on three event stream STR benchmark datasets (i.e., EventSTR, WordArt*, IC15*) fully validated the effectiveness and interpretability of our proposed framework. The source code and pre-trained models will be released on https://github.com/Event-AHU/ESTR-CoT.
Network cascade refers to diffusion processes in which outcome changes within part of an interconnected population trigger a sequence of changes across the entire network. These cascades are governed by underlying diffusion networks, which are often latent. Inferring such networks is critical for understanding cascade pathways, uncovering Granger causality of interaction mechanisms among individuals, and enabling tasks such as forecasting or maximizing information propagation. In this project, we propose a novel double mixture directed graph model for inferring multi-layer diffusion networks from cascade data. The proposed model represents cascade pathways as a mixture of diffusion networks across different layers, effectively capturing the strong heterogeneity present in real-world cascades. Additionally, the model imposes layer-specific structural constraints, enabling diffusion networks at different layers to capture complementary cascading patterns at the population level. A key advantage of our model is its convex formulation, which allows us to establish both statistical and computational guarantees for the resulting diffusion network estimates. We conduct extensive simulation studies to demonstrate the model's performance in recovering diverse diffusion structures. Finally, we apply the proposed method to analyze cascades of research topics in the social sciences across U.S. universities, revealing the underlying diffusion networks of research topic propagation among institutions.
Decoder-only large language models have shown superior performance in the fluency-edit English Grammatical Error Correction, but their adaptation for minimal-edit English GEC is still underexplored. To improve their effectiveness in the minimal-edit approach, we explore the error rate adaptation topic and propose a novel training schedule method. Our experiments set a new state-of-the-art result for a single-model system on the BEA-test set. We also detokenize the most common English GEC datasets to match the natural way of writing text. During the process, we find that there are errors in them. Our experiments analyze whether training on detokenized datasets impacts the results and measure the impact of the usage of the datasets with corrected erroneous examples. To facilitate reproducibility, we have released the source code used to train our models.