Abstract:While Large Reasoning Models (LRMs) have achieved remarkable performance by scaling test-time compute, they frequently suffer from Cognitive Inertia, a failure pattern manifesting as either overthinking (inertia of motion) or reasoning rigidity (inertia of direction). Existing detection methods, typically relying on superficial textual heuristics like self-correction tokens, often fail to capture the model's unvoiced internal conflicts. To address this, we propose STARS (Spike-Triggered Adaptive Reasoning Steering), a training-free framework designed to rectify cognitive inertia by monitoring latent dynamics. STARS identifies Cognitive Pivots-critical moments of reasoning transition-by detecting distinct L2 distance spikes in the hidden states. Upon detection, the framework employs geometric trajectory analysis to diagnose the structural nature of the transition and injects state-aware language cues to steer the model in real-time. Our experiments across diverse benchmarks confirm that STARS efficiently curtails redundant loops while improving accuracy through the adaptive correction of erroneous trajectories. STARS offers a robust, unsupervised mechanism to optimize the reasoning process of LRMs without requiring additional fine-tuning.
Abstract:Social media data has been of interest to Natural Language Processing (NLP) practitioners for over a decade, because of its richness in information, but also challenges for automatic processing. Since language use is more informal, spontaneous, and adheres to many different sociolects, the performance of NLP models often deteriorates. One solution to this problem is to transform data to a standard variant before processing it, which is also called lexical normalization. There has been a wide variety of benchmarks and models proposed for this task. The MultiLexNorm benchmark proposed to unify these efforts, but it consists almost solely of languages from the Indo-European language family in the Latin script. Hence, we propose an extension to MultiLexNorm, which covers 5 Asian languages from different language families in 4 different scripts. We show that the previous state-of-the-art model performs worse on the new languages and propose a new architecture based on Large Language Models (LLMs), which shows more robust performance. Finally, we analyze remaining errors, revealing future directions for this task.
Abstract:Despite the rapid proliferation of Role-Playing Agents (RPAs) based on Large Language Models (LLMs), the structural dimensions defining a character's identity remain weakly formalized, often treating characters as arbitrary text inputs. In this paper, we propose the concept of \textbf{Character Identity}, a multidimensional construct that disentangles a character into two distinct layers: \textbf{(1) Parametric Identity}, referring to character-specific knowledge encoded from the LLM's pre-training, and \textbf{(2) Attributive Identity}, capturing fine-grained behavioral properties such as personality traits and moral values. To systematically investigate these layers, we construct a unified character profile schema and generate both Famous and Synthetic characters under identical structural constraints. Our evaluation across single-turn and multi-turn interactions reveals two critical phenomena. First, we identify \textit{"Fame Fades"}: while famous characters hold a significant advantage in initial turns due to parametric knowledge, this edge rapidly vanishes as models prioritize accumulating conversational context over pre-trained priors. Second, we find that \textit{"Nature Remains"}: while models robustly portray general personality traits regardless of polarity, RPA performance is highly sensitive to the valence of morality and interpersonal relationships. Our findings pinpoint negative social natures as the primary bottleneck in RPA fidelity, guiding future character construction and evaluation.
Abstract:The deployment of Large Vision-Language Models (LVLMs) for real-world document question answering is often constrained by dynamic, user-defined policies that dictate information disclosure based on context. While ensuring adherence to these explicit constraints is critical, existing safety research primarily focuses on implicit social norms or text-only settings, overlooking the complexities of multimodal documents. In this paper, we introduce Doc-PP (Document Policy Preservation Benchmark), a novel benchmark constructed from real-world reports requiring reasoning across heterogeneous visual and textual elements under strict non-disclosure policies. Our evaluation highlights a systemic Reasoning-Induced Safety Gap: models frequently leak sensitive information when answers must be inferred through complex synthesis or aggregated across modalities, effectively circumventing existing safety constraints. Furthermore, we identify that providing extracted text improves perception but inadvertently facilitates leakage. To address these vulnerabilities, we propose DVA (Decompose-Verify-Aggregation), a structural inference framework that decouples reasoning from policy verification. Experimental results demonstrate that DVA significantly outperforms standard prompting defenses, offering a robust baseline for policy-compliant document understanding
Abstract:Multilingual Retrieval-Augmented Generation (mRAG) systems often exhibit a perceived preference for high-resource languages, particularly English, resulting in the widespread adoption of English pivoting. While prior studies attribute this advantage to the superior English-centric capabilities of Large Language Models (LLMs), we find that such measurements are significantly distorted by structural priors inherent in evaluation benchmarks. Specifically, we identify exposure bias and a gold availability prior-both driven by the disproportionate concentration of resources in English-as well as cultural priors rooted in topic locality, as factors that hinder accurate assessment of genuine language preference. To address these biases, we propose DeLP (Debiased Language Preference), a calibrated metric designed to explicitly factor out these structural confounds. Our analysis using DeLP reveals that the previously reported English preference is largely a byproduct of evidence distribution rather than an inherent model bias. Instead, we find that retrievers fundamentally favor monolingual alignment between the query and the document language. Building on this insight, we introduce DELTA (DEbiased Language preference-guided Text Augmentation), a lightweight and efficient mRAG framework that strategically leverages monolingual alignment to optimize cross-lingual retrieval and generation. Experimental results demonstrate that DELTA consistently outperforms English pivoting and mRAG baselines across diverse languages.




Abstract:Long-context question answering over narrative tasks is challenging because correct answers often hinge on reconstructing a coherent timeline of events while preserving contextual flow in a limited context window. Retrieval-augmented generation (RAG) indexing methods aim to address this challenge by selectively retrieving only necessary document segments. However, narrative texts possess unique characteristics that limit the effectiveness of these existing approaches. Specifically, understanding narrative texts requires more than isolated segments, as the broader context and sequential relationships between segments are crucial for comprehension. To address these limitations, we propose ChronoRAG, a novel RAG framework specialized for narrative texts. This approach focuses on two essential aspects: refining dispersed document information into coherent and structured passages, and preserving narrative flow by explicitly capturing and maintaining the temporal order among retrieved passages. We empirically demonstrate the effectiveness of ChronoRAG through experiments on the NarrativeQA dataset, showing substantial improvements in tasks requiring both factual identification and comprehension of complex sequential relationships, underscoring that reasoning over temporal order is crucial in resolving narrative QA.
Abstract:Large language models (LLMs) offer impressive performance but are impractical for resource-constrained deployment due to high latency and energy consumption. Knowledge distillation (KD) addresses this by transferring knowledge from a large teacher to a smaller student model. However, conventional KD, notably approaches like Forward KL (FKL) and Reverse KL (RKL), apply uniform divergence loss across the entire vocabulary, neglecting token-level prediction discrepancies. By investigating these representative divergences via gradient analysis, we reveal that FKL boosts underestimated tokens, while RKL suppresses overestimated ones, showing their complementary roles. Based on this observation, we propose Token-wise Distillation (ToDi), a novel method that adaptively combines FKL and RKL per token using a sigmoid-based weighting function derived from the teacher-student probability log-ratio. ToDi dynamically emphasizes the appropriate divergence for each token, enabling precise distribution alignment. We demonstrate that ToDi consistently outperforms recent distillation baselines using uniform or less granular strategies across instruction-following benchmarks. Extensive ablation studies and efficiency analysis further validate ToDi's effectiveness and practicality.
Abstract:Despite significant advancements in Large Vision Language Models (LVLMs), a gap remains, particularly regarding their interpretability and how they locate and interpret textual information within images. In this paper, we explore various LVLMs to identify the specific heads responsible for recognizing text from images, which we term the Optical Character Recognition Head (OCR Head). Our findings regarding these heads are as follows: (1) Less Sparse: Unlike previous retrieval heads, a large number of heads are activated to extract textual information from images. (2) Qualitatively Distinct: OCR heads possess properties that differ significantly from general retrieval heads, exhibiting low similarity in their characteristics. (3) Statically Activated: The frequency of activation for these heads closely aligns with their OCR scores. We validate our findings in downstream tasks by applying Chain-of-Thought (CoT) to both OCR and conventional retrieval heads and by masking these heads. We also demonstrate that redistributing sink-token values within the OCR heads improves performance. These insights provide a deeper understanding of the internal mechanisms LVLMs employ in processing embedded textual information in images.
Abstract:As Large Language Models (LLMs) are increasingly deployed in sensitive domains such as enterprise and government, ensuring that they adhere to user-defined security policies within context is critical-especially with respect to information non-disclosure. While prior LLM studies have focused on general safety and socially sensitive data, large-scale benchmarks for contextual security preservation against attacks remain lacking. To address this, we introduce a novel large-scale benchmark dataset, CoPriva, evaluating LLM adherence to contextual non-disclosure policies in question answering. Derived from realistic contexts, our dataset includes explicit policies and queries designed as direct and challenging indirect attacks seeking prohibited information. We evaluate 10 LLMs on our benchmark and reveal a significant vulnerability: many models violate user-defined policies and leak sensitive information. This failure is particularly severe against indirect attacks, highlighting a critical gap in current LLM safety alignment for sensitive applications. Our analysis reveals that while models can often identify the correct answer to a query, they struggle to incorporate policy constraints during generation. In contrast, they exhibit a partial ability to revise outputs when explicitly prompted. Our findings underscore the urgent need for more robust methods to guarantee contextual security.
Abstract:Large Language Models (LLMs) have significantly advanced text generation capabilities, including tasks like summarization, often producing coherent and fluent outputs. However, faithfulness to source material remains a significant challenge due to the generation of hallucinations. While extensive research focuses on detecting and reducing these inaccuracies, less attention has been paid to the positional distribution of hallucination within generated text, particularly in long outputs. In this work, we investigate where hallucinations occur in LLM-based long response generation, using long document summarization as a key case study. Focusing on the challenging setting of long context-aware long response generation, we find a consistent and concerning phenomenon: hallucinations tend to concentrate disproportionately in the latter parts of the generated long response. To understand this bias, we explore potential contributing factors related to the dynamics of attention and decoding over long sequences. Furthermore, we investigate methods to mitigate this positional hallucination, aiming to improve faithfulness specifically in the concluding segments of long outputs.