Abstract:We present a systematic framework of indices designed to characterize Large Language Model (LLM) responses when challenged with rebuttals during a chat. Assessing how LLMs respond to user dissent is crucial for understanding their reliability and behavior patterns, yet the complexity of human-LLM interactions makes systematic evaluation challenging. Our approach employs a fictitious-response rebuttal method that quantifies LLM behavior when presented with multiple-choice questions followed by deliberate challenges to their fictitious previous response. The indices are specifically designed to detect and measure what could be characterized as sycophantic behavior (excessive agreement with user challenges) or stubborn responses (rigid adherence to the fictitious response in the chat history) from LLMs. These metrics allow investigation of the relationships between sycophancy, stubbornness, and the model's actual mastery of the subject matter. We demonstrate the utility of these indices using two physics problems as test scenarios with various OpenAI models. The framework is intentionally generalizable to any multiple-choice format question, including on topics without universally accepted correct answers. Our results reveal measurable differences across OpenAI model generations, with trends indicating that newer models and those employing greater "Reasoning Effort" exhibit reduced sycophantic behavior. The FR pairing method combined with our proposed indices provides a practical, adaptable toolkit for systematically comparing LLM dialogue behaviors across different models and contexts.
Abstract:We investigate the multilingual and multimodal performance of a large language model-based artificial intelligence (AI) system, GPT-4o, on a diverse set of physics concept inventories spanning multiple languages and subject areas. The inventories taken from the PhysPort website cover the classical physics topics of mechanics, electromagnetism, optics, and thermodynamics as well as relativity, quantum mechanics, astronomy, mathematics, and laboratory skills. Unlike previous text-only studies, we uploaded the inventories as images mirroring what a student would see on paper, assessing the system's multimodal functionality. The AI is prompted in English and autonomously chooses the language of its response - either remaining in the nominal language of the test, switching entirely to English, or mixing languages - revealing adaptive behavior dependent on linguistic complexity and data availability. Our results indicate some variation in performance across subject areas, with laboratory skills standing out as the area of poorest performance. Furthermore, the AI's performance on questions that require visual interpretation of images is worse than on purely text-based questions. Questions that are difficult for the AI tend to be that way invariably of the inventory language. We also find large variations in performance across languages, with some appearing to benefit substantially from language switching, a phenomenon similar to code-switching ofhuman speakers. Overall, comparing the obtained AI results to the existing literature, we find that the AI system outperforms average undergraduate students post-instruction in all subject areas but laboratory skills.