Recommendation is the task of providing personalized suggestions to users based on their preferences and behavior.
Semantic ID (SID)-based recommendation is a promising paradigm for scaling sequential recommender systems, but existing methods largely follow a semantic-centric pipeline: item embeddings are learned from foundation models and discretized using generic quantization schemes. This design is misaligned with generative recommendation objectives: semantic embeddings are weakly coupled with collaborative prediction, and generic quantization is inefficient at reducing sequential uncertainty for autoregressive modeling. To address these, we propose ReSID, a recommendation-native, principled SID framework that rethinks representation learning and quantization from the perspective of information preservation and sequential predictability, without relying on LLMs. ReSID consists of two components: (i) Field-Aware Masked Auto-Encoding (FAMAE), which learns predictive-sufficient item representations from structured features, and (ii) Globally Aligned Orthogonal Quantization (GAOQ), which produces compact and predictable SID sequences by jointly reducing semantic ambiguity and prefix-conditional uncertainty. Theoretical analysis and extensive experiments across ten datasets show the effectiveness of ReSID. ReSID consistently outperforms strong sequential and SID-based generative baselines by an average of over 10%, while reducing tokenization cost by up to 122x. Code is available at https://github.com/FuCongResearchSquad/ReSID.
We study online inverse linear optimization, also known as contextual recommendation, where a learner sequentially infers an agent's hidden objective vector from observed optimal actions over feasible sets that change over time. The learner aims to recommend actions that perform well under the agent's true objective, and the performance is measured by the regret, defined as the cumulative gap between the agent's optimal values and those achieved by the learner's recommended actions. Prior work has established a regret bound of $O(d\log T)$, as well as a finite but exponentially large bound of $\exp(O(d\log d))$, where $d$ is the dimension of the optimization problem and $T$ is the time horizon, while a regret lower bound of $Ω(d)$ is known (Gollapudi et al. 2021; Sakaue et al. 2025). Whether a finite regret bound polynomial in $d$ is achievable or not has remained an open question. We partially resolve this by showing that when the feasible sets are M-convex -- a broad class that includes matroids -- a finite regret bound of $O(d\log d)$ is possible. We achieve this by combining a structural characterization of optimal solutions on M-convex sets with a geometric volume argument. Moreover, we extend our approach to adversarially corrupted feedback in up to $C$ rounds. We obtain a regret bound of $O((C+1)d\log d)$ without prior knowledge of $C$, by monitoring directed graphs induced by the observed feedback to detect corruptions adaptively.
In the wave of generative recommendation, we present OneMall, an end-to-end generative recommendation framework tailored for e-commerce services at Kuaishou. Our OneMall systematically unifies the e-commerce's multiple item distribution scenarios, such as Product-card, short-video and live-streaming. Specifically, it comprises three key components, aligning the entire model training pipeline to the LLM's pre-training/post-training: (1) E-commerce Semantic Tokenizer: we provide a tokenizer solution that captures both real-world semantics and business-specific item relations across different scenarios; (2) Transformer-based Architecture: we largely utilize Transformer as our model backbone, e.g., employing Query-Former for long sequence compression, Cross-Attention for multi-behavior sequence fusion, and Sparse MoE for scalable auto-regressive generation; (3) Reinforcement Learning Pipeline: we further connect retrieval and ranking models via RL, enabling the ranking model to serve as a reward signal for end-to-end policy retrieval model optimization. Extensive experiments demonstrate that OneMall achieves consistent improvements across all e-commerce scenarios: +13.01\% GMV in product-card, +15.32\% Orders in Short-Video, and +2.78\% Orders in Live-Streaming. OneMall has been deployed, serving over 400 million daily active users at Kuaishou.
How should Large Language Model (LLM) practitioners select the right model for a task without wasting money? We introduce BELLA (Budget-Efficient LLM Selection via Automated skill-profiling), a framework that recommends optimal LLM selection for tasks through interpretable skill-based model selection. Standard benchmarks report aggregate metrics that obscure which specific capabilities a task requires and whether a cheaper model could suffice. BELLA addresses this gap through three stages: (1) decomposing LLM outputs and extract the granular skills required by using critic-based profiling, (2) clustering skills into structured capability matrices, and (3) multi-objective optimization to select the right models to maximize performance while respecting budget constraints. BELLA provides natural-language rationale for recommendations, providing transparency that current black-box routing systems lack. We describe the framework architecture, situate it within the landscape of LLM routing and evaluation, and discuss its application to financial reasoning as a representative domain exhibiting diverse skill requirements and cost-variation across models. Our framework enables practitioners to make principled and cost-performance trade-offs for deploying LLMs.
A core research question in recommender systems is to propose batches of highly relevant and diverse items, that is, items personalized to the user's preferences, but which also might get the user out of their comfort zone. This diversity might induce properties of serendipidity and novelty which might increase user engagement or revenue. However, many real-life problems arise in that case: e.g., avoiding to recommend distinct but too similar items to reduce the churn risk, and computational cost for large item libraries, up to millions of items. First, we consider the case when the user feedback model is perfectly observed and known in advance, and introduce an efficient algorithm called B-DivRec combining determinantal point processes and a fuzzy denuding procedure to adjust the degree of item diversity. This helps enforcing a quality-diversity trade-off throughout the user history. Second, we propose an approach to adaptively tailor the quality-diversity trade-off to the user, so that diversity in recommendations can be enhanced if it leads to positive feedback, and vice-versa. Finally, we illustrate the performance and versatility of B-DivRec in the two settings on synthetic and real-life data sets on movie recommendation and drug repurposing.
Studies on recommendations in social media have mainly analyzed the quality of recommended items (e.g., their diversity or biases) and the impact of recommendation policies (e.g., in comparison with purely chronological policies). We use a data donation program, collecting more than 2.5 million friend recommendations made to 682 volunteers on X over a year, to study instead how real-world recommenders learn, represent and process political and social attributes of users inside the so-called black boxes of AI systems. Using publicly available knowledge on the architecture of the recommender, we inferred the positions of recommended users in its embedding space. Leveraging ideology scaling calibrated with political survey data, we analyzed the political position of users in our study (N=26,509 among volunteers and recommended contacts) among several attributes, including age and gender. Our results show that the platform's recommender system produces a spatial ordering of users that is highly correlated with their Left-Right positions (Pearson rho=0.887, p-value < 0.0001), and that cannot be explained by socio-demographic attributes. These results open new possibilities for studying the interaction between human and AI systems. They also raise important questions linked to the legal definition of algorithmic profiling in data privacy regulation by blurring the line between active and passive profiling. We explore new constrained recommendation methods enabled by our results, limiting the political information in the recommender as a potential tool for privacy compliance capable of preserving recommendation relevance.
This paper addresses the challenge of improving interaction quality in dialogue based learning by detecting and recommending effective pedagogical strategies in tutor student conversations. We introduce PedagoSense, a pedology grounded system that combines a two stage strategy classifier with large language model generation. The system first detects whether a pedagogical strategy is present using a binary classifier, then performs fine grained classification to identify the specific strategy. In parallel, it recommends an appropriate strategy from the dialogue context and uses an LLM to generate a response aligned with that strategy. We evaluate on human annotated tutor student dialogues, augmented with additional non pedagogical conversations for the binary task. Results show high performance for pedagogical strategy detection and consistent gains when using data augmentation, while analysis highlights where fine grained classes remain challenging. Overall, PedagoSense bridges pedagogical theory and practical LLM based response generation for more adaptive educational technologies.
Background: Thyroid ultrasound is commonly performed using a combination of static images and cine clips (video recordings). However, the exact utility and impact of cine images remains unknown. This study aimed to evaluate the impact of cine imaging on accuracy and consistency of thyroid nodule assessment, using the American College of Radiology Thyroid Reporting and Data System (ACR TI-RADS). Methods: 50 benign and 50 malignant thyroid nodules with cytopathology results were included. A reader study with 4 specialty-trained radiologists was then conducted over 3 rounds, assessing only static images in the first two rounds and both static and cine images in the third round. TI-RADS scores and the consequent management recommendations were then evaluated by comparing them to the malignancy status of the nodules. Results: Mean sensitivity for malignancy detection was 0.65 for static images and 0.67 with both static and cine images (p>0.5). Specificity was 0.20 for static images and 0.22 with both static and cine images (p>0.5). Management recommendations were similar with and without cine images. Intrareader agreement on feature assignments remained consistent across all rounds, though TI-RADS point totals were slightly higher with cine images. Conclusion: The inclusion of cine imaging for thyroid nodule assessment on ultrasound did not significantly change diagnostic performance. Current practice guidelines, which do not mandate cine imaging, are sufficient for accurate diagnosis.
Cold-start exploration is a core challenge in large-scale recommender systems: new or data-sparse items must receive traffic to estimate value, but over-exploration harms users and wastes impressions. In practice, Thompson Sampling (TS) is often initialized with a uniform Beta(1,1) prior, implicitly assuming a 50% success rate for unseen items. When true base rates are far lower, this optimistic prior systematically over-allocates to weak items. The impact is amplified by batched policy updates and pipeline latency: for hours, newly launched items can remain effectively "no data," so the prior dominates allocation before feedback is incorporated. We propose Dynamic Prior Thompson Sampling, a prior design that directly controls the probability that a new arm outcompetes the incumbent winner. Our key contribution is a closed-form quadratic solution for the prior mean that enforces P(X_j > Y_k) = epsilon at introduction time, making exploration intensity predictable and tunable while preserving TS Bayesian updates. Across Monte Carlo validation, offline batched simulations, and a large-scale online experiment on a thumbnail personalization system serving millions of users, dynamic priors deliver precise exploration control and improved efficiency versus a uniform-prior baseline.
For over a decade, cybersecurity has relied on human labor scarcity to limit attackers to high-value targets manually or generic automated attacks at scale. Building sophisticated exploits requires deep expertise and manual effort, leading defenders to assume adversaries cannot afford tailored attacks at scale. AI agents break this balance by automating vulnerability discovery and exploitation across thousands of targets, needing only small success rates to remain profitable. Current developers focus on preventing misuse through data filtering, safety alignment, and output guardrails. Such protections fail against adversaries who control open-weight models, bypass safety controls, or develop offensive capabilities independently. We argue that AI-agent-driven cyber attacks are inevitable, requiring a fundamental shift in defensive strategy. In this position paper, we identify why existing defenses cannot stop adaptive adversaries and demonstrate that defenders must develop offensive security intelligence. We propose three actions for building frontier offensive AI capabilities responsibly. First, construct comprehensive benchmarks covering the full attack lifecycle. Second, advance from workflow-based to trained agents for discovering in-wild vulnerabilities at scale. Third, implement governance restricting offensive agents to audited cyber ranges, staging release by capability tier, and distilling findings into safe defensive-only agents. We strongly recommend treating offensive AI capabilities as essential defensive infrastructure, as containing cybersecurity risks requires mastering them in controlled settings before adversaries do.