Recommendation is the task of providing personalized suggestions to users based on their preferences and behavior.
Algorithms of online platforms are required under the Digital Services Act (DSA) to comply with specific obligations concerning algorithmic transparency, user protection and privacy. To verify compliance with these requirements, DSA mandates platforms to undergo independent audits. Little is known about current auditing practices and their effectiveness in ensuring such compliance. To this end, we bridge regulatory and technical perspectives by critically examining selected audit reports across three critical algorithmic-related provisions: restrictions on profiling minors, transparency in recommender systems, and limitations on targeted advertising using sensitive data. Our analysis shows significant inconsistencies in methodologies and lack of technical depth when evaluating AI-powered systems. To enhance the depth, scale, and independence of compliance assessments, we propose to employ algorithmic auditing -- a process of behavioural assessment of AI algorithms by means of simulating user behaviour, observing algorithm responses and analysing them for audited phenomena.
LLMs have garnered substantial attention in recommendation systems. Yet they fall short of traditional recommenders when capturing complex preference patterns. Recent works have tried integrating traditional recommendation embeddings into LLMs to resolve this issue, yet a core gap persists between their continuous embedding and discrete semantic spaces. Intuitively, textual attributes derived from interactions can serve as critical preference rationales for LLMs' recommendation logic. However, directly inputting such attribute knowledge presents two core challenges: (1) Deficiency of sparse interactions in reflecting preference hints for unseen items; (2) Substantial noise introduction from treating all attributes as hints. To this end, we propose a preference hint discovery model based on the interaction-integrated knowledge graph, enhancing LLM-based recommendation. It utilizes traditional recommendation principles to selectively extract crucial attributes as hints. Specifically, we design a collaborative preference hint extraction schema, which utilizes semantic knowledge from similar users' explicit interactions as hints for unseen items. Furthermore, we develop an instance-wise dual-attention mechanism to quantify the preference credibility of candidate attributes, identifying hints specific to each unseen item. Using these item- and user-based hints, we adopt a flattened hint organization method to shorten input length and feed the textual hint information to the LLM for commonsense reasoning. Extensive experiments on both pair-wise and list-wise recommendation tasks verify the effectiveness of our proposed framework, indicating an average relative improvement of over 3.02% against baselines.
Learning from human feedback~(LHF) assumes that expert judgments, appropriately aggregated, yield valid ground truth for training and evaluating AI systems. We tested this assumption in mental health, where high safety stakes make expert consensus essential. Three certified psychiatrists independently evaluated LLM-generated responses using a calibrated rubric. Despite similar training and shared instructions, inter-rater reliability was consistently poor ($ICC$ $0.087$--$0.295$), falling below thresholds considered acceptable for consequential assessment. Disagreement was highest on the most safety-critical items. Suicide and self-harm responses produced greater divergence than any other category, and was systematic rather than random. One factor yielded negative reliability (Krippendorff's $α= -0.203$), indicating structured disagreement worse than chance. Qualitative interviews revealed that disagreement reflects coherent but incompatible individual clinical frameworks, safety-first, engagement-centered, and culturally-informed orientations, rather than measurement error. By demonstrating that experts rely on holistic risk heuristics rather than granular factor discrimination, these findings suggest that aggregated labels function as arithmetic compromises that effectively erase grounded professional philosophies. Our results characterize expert disagreement in safety-critical AI as a sociotechnical phenomenon where professional experience introduces sophisticated layers of principled divergence. We discuss implications for reward modeling, safety classification, and evaluation benchmarks, recommending that practitioners shift from consensus-based aggregation to alignment methods that preserve and learn from expert disagreement.
Group recommender systems help users make collective choices but often lack transparency, leaving group members uncertain about why items are suggested. Existing explanation methods focus on individuals, offering limited support for groups where multiple preferences interact. In this paper, we propose a framework for group counterfactual explanations, which reveal how removing specific past interactions would change a group recommendation. We formalize this concept, introduce utility and fairness measures tailored to groups, and design heuristic algorithms, such as Pareto-based filtering and grow-and-prune strategies, for efficient explanation discovery. Experiments on MovieLens and Amazon datasets show clear trade-offs: low-cost methods produce larger, less fair explanations, while other approaches yield concise and balanced results at higher cost. Furthermore, the Pareto-filtering heuristic demonstrates significant efficiency improvements in sparse settings.
Recommendation systems (RS) aim to retrieve the top-K items most relevant to users, with metrics such as Precision@K and Recall@K commonly used to assess effectiveness. The architecture of an RS model acts as an inductive bias, shaping the patterns the model is inclined to learn. In recent years, numerous recommendation architectures have emerged, spanning traditional matrix factorization, deep neural networks, and graph neural networks. However, their designs are often not explicitly aligned with the top-K objective, thereby limiting their effectiveness. To address this limitation, we propose TopKGAT, a novel recommendation architecture directly derived from a differentiable approximation of top-K metrics. The forward computation of a single TopKGAT layer is intrinsically aligned with the gradient ascent dynamics of the Precision@K metric, enabling the model to naturally improve top-K recommendation accuracy. Structurally, TopKGAT resembles a graph attention network and can be implemented efficiently. Extensive experiments on four benchmark datasets demonstrate that TopKGAT consistently outperforms state-of-the-art baselines. The code is available at https://github.com/StupidThree/TopKGAT.
Nutritional interventions are important for managing chronic health conditions, but current computational methods provide limited support for personalized dietary guidance. We identify three key gaps: (1) dietary pattern studies often ignore real-world constraints such as socioeconomic status, comorbidities, and limited food access; (2) recommendation systems rarely explain why a particular food helps a given patient; and (3) no unified benchmark evaluates methods across the connected tasks needed for nutritional interventions. We introduce GLEN-Bench, the first comprehensive graph-language based benchmark for nutritional health assessment. We combine NHANES health records, FNDDS food composition data, and USDA food-access metrics to build a knowledge graph that links demographics, health conditions, dietary behaviors, poverty-related constraints, and nutrient needs. We test the benchmark using opioid use disorder, where models must detect subtle nutritional differences across disease stages. GLEN-Bench includes three linked tasks: risk detection identifies at-risk individuals from dietary and socioeconomic patterns; recommendation suggests personalized foods that meet clinical needs within resource constraints; and question answering provides graph-grounded, natural-language explanations to facilitate comprehension. We evaluate these graph-language approaches, including graph neural networks, large language models, and hybrid architectures, to establish solid baselines and identify practical design choices. Our analysis identifies clear dietary patterns linked to health risks, providing insights that can guide practical interventions.
As climate-related hazards intensify, conventional early warning systems (EWS) disseminate alerts rapidly but often fail to trigger timely protective actions, leading to preventable losses and inequities. We introduce Climate RADAR (Risk-Aware, Dynamic, and Action Recommendation system), a generative AI-based reliability layer that reframes disaster communication from alerts delivered to actions executed. It integrates meteorological, hydrological, vulnerability, and social data into a composite risk index and employs guardrail-embedded large language models (LLMs) to deliver personalized recommendations across citizen, volunteer, and municipal interfaces. Evaluation through simulations, user studies, and a municipal pilot shows improved outcomes, including higher protective action execution, reduced response latency, and increased usability and trust. By combining predictive analytics, behavioral science, and responsible AI, Climate RADAR advances people-centered, transparent, and equitable early warning systems, offering practical pathways toward compliance-ready disaster resilience infrastructures.
Click-through rate (CTR) prediction plays a pivotal role in online advertising and recommender systems. Despite notable progress in modeling user preferences from historical behaviors, two key challenges persist. First, exsiting discriminative paradigms focus on matching candidates to user history, often overfitting to historically dominant features and failing to adapt to rapid interest shifts. Second, a critical information chasm emerges from the point-wise ranking paradigm. By scoring each candidate in isolation, CTR models discard the rich contextual signal implied by the recalled set as a whole, leading to a misalignment where long-term preferences often override the user's immediate, evolving intent. To address these issues, we propose GenCI, a generative user intent framework that leverages semantic interest cohorts to model dynamic user preferences for CTR prediction. The framework first employs a generative model, trained with a next-item prediction (NTP) objective, to proactively produce candidate interest cohorts. These cohorts serve as explicit, candidate-agnostic representations of a user's immediate intent. A hierarchical candidate-aware network then injects this rich contextual signal into the ranking stage, refining them with cross-attention to align with both user history and the target item. The entire model is trained end-to-end, creating a more aligned and effective CTR prediction pipeline. Extensive experiments on three widely used datasets demonstrate the effectiveness of our approach.
User behavior modeling lies at the heart of personalized applications like recommender systems. With LLM-based agents, user preference representation has evolved from latent embeddings to semantic memory. While existing memory mechanisms show promise in textual dialogues, modeling non-textual behaviors remains challenging, as preferences must be inferred from implicit signals like clicks without ground truth supervision. Current approaches rely on a single unstructured summary, updated through simple overwriting. However, this is suboptimal: users exhibit multi-faceted interests that get conflated, preferences evolve yet naive overwriting causes forgetting, and sparse individual interactions necessitate collaborative signals. We present STEAM (\textit{\textbf{ST}ructured and \textbf{E}volving \textbf{A}gent \textbf{M}emory}), a novel framework that reimagines how agent memory is organized and updated. STEAM decomposes preferences into atomic memory units, each capturing a distinct interest dimension with explicit links to observed behaviors. To exploit collaborative patterns, STEAM organizes similar memories across users into communities and generates prototype memories for signal propagation. The framework further incorporates adaptive evolution mechanisms, including consolidation for refining memories and formation for capturing emerging interests. Experiments on three real-world datasets demonstrate that STEAM substantially outperforms state-of-the-art baselines in recommendation accuracy, simulation fidelity, and diversity.
The predictive probability of the next token (P_token) in large language models (LLMs) is inextricably linked to the probability of relevance for the next piece of information, the purchase probability of the next product, and the execution probability of the next action-all of which fall under the scope of the task-level target distribution (P_task). While LLMs are known to generate samples that approximate real-world distributions, whether their fine-grained sampling probabilities faithfully align with task requirements remains an open question. Through controlled distribution-sampling simulations, we uncover a striking dichotomy in LLM behavior, distinguishing two model types: D-models (e.g. Qwen-2.5), whose P_token exhibits large step-to-step variability and poor alignment with P_task; and E-models (e.g. Mistral-Small), whose P_token is more stable and better aligned with P_task. We further evaluate these two model types in downstream tasks such as code generation and recommendation, revealing systematic trade-offs between diversity and stability that shape task outcomes. Finally, we analyze the internal properties of both model families to probe their underlying mechanisms. These findings offer foundational insights into the probabilistic sampling behavior of LLMs and provide practical guidance on when to favor D- versus E-models. For web-scale applications, including recommendation, search, and conversational agents, our results inform model selection and configuration to balance diversity with reliability under real-world uncertainty, providing a better level of interpretation.