What is speech recognition? Speech recognition is the task of identifying words spoken aloud, analyzing the voice and language, and accurately transcribing the words.
Papers and Code
Jun 09, 2025
Abstract:We present DeRAGEC, a method for improving Named Entity (NE) correction in Automatic Speech Recognition (ASR) systems. By extending the Retrieval-Augmented Generative Error Correction (RAGEC) framework, DeRAGEC employs synthetic denoising rationales to filter out noisy NE candidates before correction. By leveraging phonetic similarity and augmented definitions, it refines noisy retrieved NEs using in-context learning, requiring no additional training. Experimental results on CommonVoice and STOP datasets show significant improvements in Word Error Rate (WER) and NE hit ratio, outperforming baseline ASR and RAGEC methods. Specifically, we achieved a 28% relative reduction in WER compared to ASR without postprocessing. Our source code is publicly available at: https://github.com/solee0022/deragec
* ACL2025 Findings
Via

Jun 09, 2025
Abstract:In this paper, we propose a method for annotating phonemic and prosodic labels on a given audio-transcript pair, aimed at constructing Japanese text-to-speech (TTS) datasets. Our approach involves fine-tuning a large-scale pre-trained automatic speech recognition (ASR) model, conditioned on ground truth transcripts, to simultaneously output phrase-level graphemes and annotation labels. To further correct errors in phonemic labeling, we employ a decoding strategy that utilizes dictionary prior knowledge. The objective evaluation results demonstrate that our proposed method outperforms previous approaches relying solely on text or audio. The subjective evaluation results indicate that the naturalness of speech synthesized by the TTS model, trained with labels annotated using our method, is comparable to that of a model trained with manual annotations.
* Accepted to INTERSPEECH 2025
Via

Jun 13, 2025
Abstract:Longform audio recordings obtained with microphones worn by children-also known as child-centered daylong recordings-have become a standard method for studying children's language experiences and their impact on subsequent language development. Transcripts of longform speech audio would enable rich analyses at various linguistic levels, yet the massive scale of typical longform corpora prohibits comprehensive manual annotation. At the same time, automatic speech recognition (ASR)-based transcription faces significant challenges due to the noisy, unconstrained nature of real-world audio, and no existing study has successfully applied ASR to transcribe such data. However, previous attempts have assumed that ASR must process each longform recording in its entirety. In this work, we present an approach to automatically detect those utterances in longform audio that can be reliably transcribed with modern ASR systems, allowing automatic and relatively accurate transcription of a notable proportion of all speech in typical longform data. We validate the approach on four English longform audio corpora, showing that it achieves a median word error rate (WER) of 0% and a mean WER of 18% when transcribing 13% of the total speech in the dataset. In contrast, transcribing all speech without any filtering yields a median WER of 52% and a mean WER of 51%. We also compare word log-frequencies derived from the automatic transcripts with those from manual annotations and show that the frequencies correlate at r = 0.92 (Pearson) for all transcribed words and r = 0.98 for words that appear at least five times in the automatic transcripts. Overall, the work provides a concrete step toward increasingly detailed automated linguistic analyses of child-centered longform audio.
* pre-print
Via

Jun 13, 2025
Abstract:Deep neural networks (DNNs) have achieved remarkable success across diverse domains, but their performance can be severely degraded by noisy or corrupted training data. Conventional noise mitigation methods often rely on explicit assumptions about noise distributions or require extensive retraining, which can be impractical for large-scale models. Inspired by the principles of machine unlearning, we propose a novel framework that integrates attribution-guided data partitioning, discriminative neuron pruning, and targeted fine-tuning to mitigate the impact of noisy samples. Our approach employs gradient-based attribution to probabilistically distinguish high-quality examples from potentially corrupted ones without imposing restrictive assumptions on the noise. It then applies regression-based sensitivity analysis to identify and prune neurons that are most vulnerable to noise. Finally, the resulting network is fine-tuned on the high-quality data subset to efficiently recover and enhance its generalization performance. This integrated unlearning-inspired framework provides several advantages over conventional noise-robust learning approaches. Notably, it combines data-level unlearning with model-level adaptation, thereby avoiding the need for full model retraining or explicit noise modeling. We evaluate our method on representative tasks (e.g., CIFAR-10 image classification and speech recognition) under various noise levels and observe substantial gains in both accuracy and efficiency. For example, our framework achieves approximately a 10% absolute accuracy improvement over standard retraining on CIFAR-10 with injected label noise, while reducing retraining time by up to 47% in some settings. These results demonstrate the effectiveness and scalability of the proposed approach for achieving robust generalization in noisy environments.
Via

May 28, 2025
Abstract:With approximately 7,000 languages spoken worldwide, current large language models (LLMs) support only a small subset. Prior research indicates LLMs can learn new languages for certain tasks without supervised data. We extend this investigation to speech recognition, investigating whether LLMs can learn unseen, low-resource languages through in-context learning (ICL). With experiments on four diverse endangered languages that LLMs have not been trained on, we find that providing more relevant text samples enhances performance in both language modelling and Automatic Speech Recognition (ASR) tasks. Furthermore, we show that the probability-based approach outperforms the traditional instruction-based approach in language learning. Lastly, we show ICL enables LLMs to achieve ASR performance that is comparable to or even surpasses dedicated language models trained specifically for these languages, while preserving the original capabilities of the LLMs.
* Interspeech2025
Via

Jun 11, 2025
Abstract:The advancement of text-to-speech and audio generation models necessitates robust benchmarks for evaluating the emotional understanding capabilities of AI systems. Current speech emotion recognition (SER) datasets often exhibit limitations in emotional granularity, privacy concerns, or reliance on acted portrayals. This paper introduces EmoNet-Voice, a new resource for speech emotion detection, which includes EmoNet-Voice Big, a large-scale pre-training dataset (featuring over 4,500 hours of speech across 11 voices, 40 emotions, and 4 languages), and EmoNet-Voice Bench, a novel benchmark dataset with human expert annotations. EmoNet-Voice is designed to evaluate SER models on a fine-grained spectrum of 40 emotion categories with different levels of intensities. Leveraging state-of-the-art voice generation, we curated synthetic audio snippets simulating actors portraying scenes designed to evoke specific emotions. Crucially, we conducted rigorous validation by psychology experts who assigned perceived intensity labels. This synthetic, privacy-preserving approach allows for the inclusion of sensitive emotional states often absent in existing datasets. Lastly, we introduce Empathic Insight Voice models that set a new standard in speech emotion recognition with high agreement with human experts. Our evaluations across the current model landscape exhibit valuable findings, such as high-arousal emotions like anger being much easier to detect than low-arousal states like concentration.
Via

Jun 09, 2025
Abstract:Memory and long-range temporal processing are core requirements for sequence modeling tasks across natural language processing, time-series forecasting, speech recognition, and control. While nonlinear recurrence has long been viewed as essential for enabling such mechanisms, recent work suggests that linear dynamics may often suffice. In this study, we go beyond performance comparisons to systematically dissect the functional role of nonlinearity in recurrent networks--identifying both when it is computationally necessary, and what mechanisms it enables. We use Almost Linear Recurrent Neural Networks (AL-RNNs), which allow fine-grained control over nonlinearity, as both a flexible modeling tool and a probe into the internal mechanisms of memory. Across a range of classic sequence modeling tasks and a real-world stimulus selection task, we find that minimal nonlinearity is not only sufficient but often optimal, yielding models that are simpler, more robust, and more interpretable than their fully nonlinear or linear counterparts. Our results provide a principled framework for selectively introducing nonlinearity, bridging dynamical systems theory with the functional demands of long-range memory and structured computation in recurrent neural networks, with implications for both artificial and biological neural systems.
* Preprint under review
Via

May 30, 2025
Abstract:Due to the lack of target speech annotations in real-recorded far-field conversational datasets, speech enhancement (SE) models are typically trained on simulated data. However, the trained models often perform poorly in real-world conditions, hindering their application in far-field speech recognition. To address the issue, we (a) propose direct sound estimation (DSE) to estimate the oracle direct sound of real-recorded data for SE; and (b) present a novel pseudo-supervised learning method, SuPseudo, which leverages DSE-estimates as pseudo-labels and enables SE models to directly learn from and adapt to real-recorded data, thereby improving their generalization capability. Furthermore, an SE model called FARNET is designed to fully utilize SuPseudo. Experiments on the MISP2023 corpus demonstrate the effectiveness of SuPseudo, and our system significantly outperforms the previous state-of-the-art. A demo of our method can be found at https://EeLLJ.github.io/SuPseudo/.
* Accepted by InterSpeech 2025
Via

May 30, 2025
Abstract:Memristor-based hardware offers new possibilities for energy-efficient machine learning (ML) by providing analog in-memory matrix multiplication. Current hardware prototypes cannot fit large neural networks, and related literature covers only small ML models for tasks like MNIST or single word recognition. Simulation can be used to explore how hardware properties affect larger models, but existing software assumes simplified hardware. We propose a PyTorch-based library based on "Synaptogen" to simulate neural network execution with accurately captured memristor hardware properties. For the first time, we show how an ML system with millions of parameters would behave on memristor hardware, using a Conformer trained on the speech recognition task TED-LIUMv2 as example. With adjusted quantization-aware training, we limit the relative degradation in word error rate to 25% when using a 3-bit weight precision to execute linear operations via simulated analog computation.
* Accepted for the Blue Sky track at Interspeech 2025
Via

Jun 07, 2025
Abstract:Audio Large Language Models (AudioLLMs) have achieved strong results in semantic tasks like speech recognition and translation, but remain limited in modeling paralinguistic cues such as emotion. Existing approaches often treat emotion understanding as a classification problem, offering little insight into the underlying rationale behind predictions. In this work, we explore emotion reasoning, a strategy that leverages the generative capabilities of AudioLLMs to enhance emotion recognition by producing semantically aligned, evidence-grounded explanations. To support this in multitask AudioLLMs, we introduce a unified framework combining reasoning-augmented data supervision, dual-encoder architecture, and task-alternating training. This approach enables AudioLLMs to effectively learn different tasks while incorporating emotional reasoning. Experiments on IEMOCAP and MELD show that our approach not only improves emotion prediction accuracy but also enhances the coherence and evidential grounding of the generated responses.
Via
