Speech recognition is the task of identifying words spoken aloud, analyzing the voice and language, and accurately transcribing the words.




Query spelling correction is an important function of modern search engines since it effectively helps users express their intentions clearly. With the growing popularity of speech search driven by Automated Speech Recognition (ASR) systems, this paper introduces a novel method named Contextualized Token Discrimination (CTD) to conduct effective speech query correction. In CTD, we first employ BERT to generate token-level contextualized representations and then construct a composition layer to enhance semantic information. Finally, we produce the correct query according to the aggregated token representation, correcting the incorrect tokens by comparing the original token representations and the contextualized representations. Extensive experiments demonstrate the superior performance of our proposed method across all metrics, and we further present a new benchmark dataset with erroneous ASR transcriptions to offer comprehensive evaluations for audio query correction.
Visual speech recognition (VSR) systems decode spoken words from an input sequence using only the video data. Practical applications of such systems include medical assistance as well as human-machine interactions. A VSR system is typically employed in a complementary role in cases where the audio is corrupt or not available. In order to accurately predict the spoken words, these architectures often rely on deep neural networks in order to extract meaningful representations from the input sequence. While deep architectures achieve impressive recognition performance, relying on such models incurs significant computation costs which translates into increased resource demands in terms of hardware requirements and results in limited applicability in real-world scenarios where resources might be constrained. This factor prevents wider adoption and deployment of speech recognition systems in more practical applications. In this work, we aim to alleviate this issue by developing architectures for VSR that have low hardware costs. Following the standard two-network design paradigm, where one network handles visual feature extraction and another one utilizes the extracted features to classify the entire sequence, we develop lightweight end-to-end architectures by first benchmarking efficient models from the image classification literature, and then adopting lightweight block designs in a temporal convolution network backbone. We create several unified models with low resource requirements but strong recognition performance. Experiments on the largest public database for English words demonstrate the effectiveness and practicality of our developed models. Code and trained models will be made publicly available.



The widespread availability of open-source repositories has led to a vast collection of reusable software components, yet their utilization remains manual, error-prone, and disconnected. Developers must navigate documentation, understand APIs, and write integration code, creating significant barriers to efficient software reuse. To address this, we present EnvX, a framework that leverages Agentic AI to agentize GitHub repositories, transforming them into intelligent, autonomous agents capable of natural language interaction and inter-agent collaboration. Unlike existing approaches that treat repositories as static code resources, EnvX reimagines them as active agents through a three-phase process: (1) TODO-guided environment initialization, which sets up the necessary dependencies, data, and validation datasets; (2) human-aligned agentic automation, allowing repository-specific agents to autonomously perform real-world tasks; and (3) Agent-to-Agent (A2A) protocol, enabling multiple agents to collaborate. By combining large language model capabilities with structured tool integration, EnvX automates not just code generation, but the entire process of understanding, initializing, and operationalizing repository functionality. We evaluate EnvX on the GitTaskBench benchmark, using 18 repositories across domains such as image processing, speech recognition, document analysis, and video manipulation. Our results show that EnvX achieves a 74.07% execution completion rate and 51.85% task pass rate, outperforming existing frameworks. Case studies further demonstrate EnvX's ability to enable multi-repository collaboration via the A2A protocol. This work marks a shift from treating repositories as passive code resources to intelligent, interactive agents, fostering greater accessibility and collaboration within the open-source ecosystem.
In this paper, we propose a multimodal framework for speech emotion recognition that leverages entropy-aware score selection to combine speech and textual predictions. The proposed method integrates a primary pipeline that consists of an acoustic model based on wav2vec2.0 and a secondary pipeline that consists of a sentiment analysis model using RoBERTa-XLM, with transcriptions generated via Whisper-large-v3. We propose a late score fusion approach based on entropy and varentropy thresholds to overcome the confidence constraints of primary pipeline predictions. A sentiment mapping strategy translates three sentiment categories into four target emotion classes, enabling coherent integration of multimodal predictions. The results on the IEMOCAP and MSP-IMPROV datasets show that the proposed method offers a practical and reliable enhancement over traditional single-modality systems.
Automatic speech recognition (ASR) systems struggle with domain-specific named entities, especially homophones. Contextual ASR improves recognition but often fails to capture fine-grained phoneme variations due to limited entity diversity. Moreover, prior methods treat entities as independent tokens, leading to incomplete multi-token biasing. To address these issues, we propose Phoneme-Augmented Robust Contextual ASR via COntrastive entity disambiguation (PARCO), which integrates phoneme-aware encoding, contrastive entity disambiguation, entity-level supervision, and hierarchical entity filtering. These components enhance phonetic discrimination, ensure complete entity retrieval, and reduce false positives under uncertainty. Experiments show that PARCO achieves CER of 4.22% on Chinese AISHELL-1 and WER of 11.14% on English DATA2 under 1,000 distractors, significantly outperforming baselines. PARCO also demonstrates robust gains on out-of-domain datasets like THCHS-30 and LibriSpeech.
Recent advances in language and speech modelling have made it possible to build autonomous voice assistants that understand and generate human dialogue in real time. These systems are increasingly being deployed in domains such as customer service and healthcare care, where they can automate repetitive tasks, reduce operational costs, and provide constant support around the clock. In this paper, we present a general methodology for cloning a conversational voice AI agent from a corpus of call recordings. Although the case study described in this paper uses telesales data to illustrate the approach, the underlying process generalizes to any domain where call transcripts are available. Our system listens to customers over the telephone, responds with a synthetic voice, and follows a structured playbook learned from top performing human agents. We describe the domain selection, knowledge extraction, and prompt engineering used to construct the agent, integrating automatic speech recognition, a large language model based dialogue manager, and text to speech synthesis into a streaming inference pipeline. The cloned agent is evaluated against human agents on a rubric of 22 criteria covering introduction, product communication, sales drive, objection handling, and closing. Blind tests show that the AI agent approaches human performance in routine aspects of the call while underperforming in persuasion and objection handling. We analyze these shortcomings and refine the prompt accordingly. The paper concludes with design lessons and avenues for future research, including large scale simulation and automated evaluation.
Sarcasm, a common feature of human communication, poses challenges in interpersonal interactions and human-machine interactions. Linguistic research has highlighted the importance of prosodic cues, such as variations in pitch, speaking rate, and intonation, in conveying sarcastic intent. Although previous work has focused on text-based sarcasm detection, the role of speech data in recognizing sarcasm has been underexplored. Recent advancements in speech technology emphasize the growing importance of leveraging speech data for automatic sarcasm recognition, which can enhance social interactions for individuals with neurodegenerative conditions and improve machine understanding of complex human language use, leading to more nuanced interactions. This systematic review is the first to focus on speech-based sarcasm recognition, charting the evolution from unimodal to multimodal approaches. It covers datasets, feature extraction, and classification methods, and aims to bridge gaps across diverse research domains. The findings include limitations in datasets for sarcasm recognition in speech, the evolution of feature extraction techniques from traditional acoustic features to deep learning-based representations, and the progression of classification methods from unimodal approaches to multimodal fusion techniques. In so doing, we identify the need for greater emphasis on cross-cultural and multilingual sarcasm recognition, as well as the importance of addressing sarcasm as a multimodal phenomenon, rather than a text-based challenge.
Dysarthric speech poses significant challenges for automatic speech recognition (ASR) systems due to its high variability and reduced intelligibility. In this work we explore the use of diffusion models for dysarthric speech enhancement, which is based on the hypothesis that using diffusion-based speech enhancement moves the distribution of dysarthric speech closer to that of typical speech, which could potentially improve dysarthric speech recognition performance. We assess the effect of two diffusion-based and one signal-processing-based speech enhancement algorithms on intelligibility and speech quality of two English dysarthric speech corpora. We applied speech enhancement to both typical and dysarthric speech and evaluate the ASR performance using Whisper-Turbo, and the subjective and objective speech quality of the original and enhanced dysarthric speech. We also fine-tuned Whisper-Turbo on the enhanced speech to assess its impact on recognition performance.




This paper presents an end-to-end pipeline for generating character-specific, emotion-aware speech from comics. The proposed system takes full comic volumes as input and produces speech aligned with each character's dialogue and emotional state. An image processing module performs character detection, text recognition, and emotion intensity recognition. A large language model performs dialogue attribution and emotion analysis by integrating visual information with the evolving plot context. Speech is synthesized through a text-to-speech model with distinct voice profiles tailored to each character and emotion. This work enables automated voiceover generation for comics, offering a step toward interactive and immersive comic reading experience.




Real-time Magnetic Resonance Imaging (rtMRI) visualizes vocal tract action, offering a comprehensive window into speech articulation. However, its signals are high dimensional and noisy, hindering interpretation. We investigate compact representations of spatiotemporal articulatory dynamics for phoneme recognition from midsagittal vocal tract rtMRI videos. We compare three feature types: (1) raw video, (2) optical flow, and (3) six linguistically-relevant regions of interest (ROIs) for articulator movements. We evaluate models trained independently on each representation, as well as multi-feature combinations. Results show that multi-feature models consistently outperform single-feature baselines, with the lowest phoneme error rate (PER) of 0.34 obtained by combining ROI and raw video. Temporal fidelity experiments demonstrate a reliance on fine-grained articulatory dynamics, while ROI ablation studies reveal strong contributions from tongue and lips. Our findings highlight how rtMRI-derived features provide accuracy and interpretability, and establish strategies for leveraging articulatory data in speech processing.