Vector similarity search is an essential primitive in modern AI and ML applications. Most vector databases adopt graph-based approximate nearest neighbor (ANN) search algorithms, such as DiskANN (Subramanya et al., 2019), which have demonstrated state-of-the-art empirical performance. DiskANN's graph construction is governed by a reachability parameter $α$, which gives a trade-off between construction time, query time, and accuracy. However, adaptively tuning this trade-off typically requires rebuilding the index for different $α$ values, which is prohibitive at scale. In this work, we propose RP-Tuning, an efficient post-hoc routine, based on DiskANN's pruning step, to adjust the $α$ parameter without reconstructing the full index. Within the $α$-reachability framework of prior theoretical works (Indyk and Xu, 2023; Gollapudi et al., 2025), we prove that pruning an initially $α$-reachable graph with RP-Tuning preserves worst-case reachability guarantees in general metrics and improved guarantees in Euclidean metrics. Empirically, we show that RP-Tuning accelerates DiskANN tuning on four public datasets by up to $43\times$ with negligible overhead.
Inference on the conditional mean function (CMF) is central to tasks from adaptive experimentation to optimal treatment assignment and algorithmic fairness auditing. In this work, we provide a novel asymptotic anytime-valid test for a CMF global null (e.g., that all conditional means are zero) and contrasts between CMFs, enabling experimenters to make high confidence decisions at any time during the experiment beyond a minimum sample size. We provide mild conditions under which our tests achieve (i) asymptotic type-I error guarantees, (i) power one, and, unlike past tests, (iii) optimal sample complexity relative to a Gaussian location testing. By inverting our tests, we show how to construct function-valued asymptotic confidence sequences for the CMF and contrasts thereof. Experiments on both synthetic and real-world data show our method is well-powered across various distributions while preserving the nominal error rate under continuous monitoring.
The European Defence Agency's revised Capability Development Plan (CDP) identifies as a priority improving ground combat capabilities by enhancing soldiers' equipment for better protection. The CAPSARII project proposes in innovative wearable system and Internet of Battlefield Things (IoBT) framework to monitor soldiers' physiological and psychological status, aiding tactical decisions and medical support. The CAPSARII system will enhance situational awareness and operational effectiveness by monitoring physiological, movement and environmental parameters, providing real-time tactical decision support through AI models deployed on edge nodes and enable data analysis and comparative studies via cloud-based analytics. CAPSARII also aims at improving usability through smart textile integration, longer battery life, reducing energy consumption through software and hardware optimizations, and address security concerns with efficient encryption and strong authentication methods. This innovative approach aims to transform military operations by providing a robust, data-driven decision support tool.
The Unrelated Parallel Machine Scheduling Problem (UPMSP) with release dates, setups, and eligibility constraints presents a significant multi-objective challenge. Traditional methods struggle to balance minimizing Total Weighted Tardiness (TWT) and Total Setup Time (TST). This paper proposes a Deep Reinforcement Learning framework using Proximal Policy Optimization (PPO) and a Graph Neural Network (GNN). The GNN effectively represents the complex state of jobs, machines, and setups, allowing the PPO agent to learn a direct scheduling policy. Guided by a multi-objective reward function, the agent simultaneously minimizes TWT and TST. Experimental results on benchmark instances demonstrate that our PPO-GNN agent significantly outperforms a standard dispatching rule and a metaheuristic, achieving a superior trade-off between both objectives. This provides a robust and scalable solution for complex manufacturing scheduling.
Diffusion language models (D-LLMs) offer parallel denoising and bidirectional context, but hallucination detection for D-LLMs remains underexplored. Prior detectors developed for auto-regressive LLMs typically rely on single-pass cues and do not directly transfer to diffusion generation, where factuality evidence is distributed across the denoising trajectory and may appear, drift, or be self-corrected over time. We introduce TDGNet, a temporal dynamic graph framework that formulates hallucination detection as learning over evolving token-level attention graphs. At each denoising step, we sparsify the attention graph and update per-token memories via message passing, then apply temporal attention to aggregate trajectory-wide evidence for final prediction. Experiments on LLaDA-8B and Dream-7B across QA benchmarks show consistent AUROC improvements over output-based, latent-based, and static-graph baselines, with single-pass inference and modest overhead. These results highlight the importance of temporal reasoning on attention graphs for robust hallucination detection in diffusion language models.
With the success of static black-hole imaging, the next frontier is the dynamic and 3D imaging of black holes. Recovering the dynamic 3D gas near a black hole would reveal previously-unseen parts of the universe and inform new physics models. However, only sparse radio measurements from a single viewpoint are possible, making the dynamic 3D reconstruction problem significantly ill-posed. Previously, BH-NeRF addressed the ill-posed problem by assuming Keplerian dynamics of the gas, but this assumption breaks down near the black hole, where the strong gravitational pull of the black hole and increased electromagnetic activity complicate fluid dynamics. To overcome the restrictive assumptions of BH-NeRF, we propose PI-DEF, a physics-informed approach that uses differentiable neural rendering to fit a 4D (time + 3D) emissivity field given EHT measurements. Our approach jointly reconstructs the 3D velocity field with the 4D emissivity field and enforces the velocity as a soft constraint on the dynamics of the emissivity. In experiments on simulated data, we find significantly improved reconstruction accuracy over both BH-NeRF and a physics-agnostic approach. We demonstrate how our method may be used to estimate other physics parameters of the black hole, such as its spin.
Modern video recommendation systems aim to optimize user engagement and platform objectives, yet often face structural exposure imbalances caused by behavioral biases. In this work, we focus on the post-ranking stage and present LAFB (Learning to Alleviate Familiarity Bias), a lightweight and model-agnostic framework designed to mitigate familiarity bias in recommendation outputs. LAFB models user-content familiarity using discrete and continuous interaction features, and estimates personalized debiasing factors to adjust user rating prediction scores, thereby reducing the dominance of familiar content in the final ranking. We conduct large-scale offline evaluations and online A/B testing in a real-world recommendation system, under a unified serving stack that also compares LAFB with deployable popularity-oriented remedies. Results show that LAFB increases novel watch-time share and improves exposure for emerging creators and overall content diversity, while maintaining stable overall watch time and short-term satisfaction. LAFB has already been launched in the post-ranking stage of YouTube's recommendation system, demonstrating its effectiveness in real-world applications.
The algorithms based on message passing neural networks (MPNNs) on graphs have recently achieved great success for various graph applications. However, studies find that these methods always propagate the information to very limited neighborhoods with shallow depth, particularly due to over-smoothing. That means most of the existing MPNNs fail to be so `deep'. Although some previous work tended to handle this challenge via optimization- or structure-level remedies, the overall performance of GCNs still suffers from limited accuracy, poor stability, and unaffordable computational cost. Moreover, neglect of higher-order relationships during the propagation of MPNNs has further limited the performance of them. To overcome these challenges, a novel variant of PageRank named motif-based personalized PageRank (MPPR) is proposed to measure the influence of one node to another on the basis of considering higher-order motif relationships. Secondly, the MPPR is utilized to the message passing process of GCNs, thereby guiding the message passing process at a relatively `high' level. The experimental results show that the proposed method outperforms almost all of the baselines on accuracy, stability, and time consumption. Additionally, the proposed method can be considered as a component that can underpin almost all GCN tasks, with DGCRL being demonstrated in the experiment. The anonymous code repository is available at: https://anonymous.4open.science/r/GCN-MPPR-AFD6/.
This paper reimagines the foundational feedback mechanism in wireless communication, transforming the prevailing 1-bit binary ACK/NACK with a high-dimensional, information-rich vector to transform passive acknowledgment into an active collaboration. We present Rich-ARQ, a paradigm that introduces neural-coded feedback for collaborative physical-layer channel coding between transmitter and receiver. To realize this vision in practice, we develop a novel asynchronous feedback code that eliminates stalling from feedback delays, adapts dynamically to channel fluctuations, and features a lightweight encoder suitable for on-device deployment. We materialize this concept into the first full-stack, standard-compliant software-defined radio prototype, which decouples AI inference from strict radio timing. Comprehensive over-the-air experiments demonstrate that Rich-ARQ achieves significant SNR gains over conventional 1-bit hybrid ARQ and remarkable latency reduction over prior learning-based feedback codes, moving the promise of intelligent feedback from theory to a practical, high-performance reality for next-generation networks.
Evaluating relevance in large-scale search systems is fundamentally constrained by the governance gap between nuanced, resource-constrained human oversight and the high-throughput requirements of production systems. While traditional approaches rely on engagement proxies or sparse manual review, these methods often fail to capture the full scope of high-impact relevance failures. We present \textbf{SAGE} (Scalable AI Governance \& Evaluation), a framework that operationalizes high-quality human product judgment as a scalable evaluation signal. At the core of SAGE is a bidirectional calibration loop where natural-language \emph{Policy}, curated \emph{Precedent}, and an \emph{LLM Surrogate Judge} co-evolve. SAGE systematically resolves semantic ambiguities and misalignments, transforming subjective relevance judgment into an executable, multi-dimensional rubric with near human-level agreement. To bridge the gap between frontier model reasoning and industrial-scale inference, we apply teacher-student distillation to transfer high-fidelity judgments into compact student surrogates at \textbf{92$\times$} lower cost. Deployed within LinkedIn Search ecosystems, SAGE guided model iteration through simulation-driven development, distilling policy-aligned models for online serving and enabling rapid offline evaluation. In production, it powered policy oversight that measured ramped model variants and detected regressions invisible to engagement metrics. Collectively, these drove a \textbf{0.25\%} lift in LinkedIn daily active users.