Abstract:Alzheimer's Disease (AD) is marked by significant inter-individual variability in its progression, complicating accurate prognosis and personalized care planning. This heterogeneity underscores the critical need for predictive models capable of forecasting patient-specific disease trajectories. Artificial Intelligence (AI) offers powerful tools to address this challenge by analyzing complex, multi-modal, and longitudinal patient data. This paper provides a comprehensive survey of AI methodologies applied to personalized AD progression prediction. We review key approaches including state-space models for capturing temporal dynamics, deep learning techniques like Recurrent Neural Networks for sequence modeling, Graph Neural Networks (GNNs) for leveraging network structures, and the emerging concept of AI-driven digital twins for individualized simulation. Recognizing that data limitations often impede progress, we examine common challenges such as high dimensionality, missing data, and dataset imbalance. We further discuss AI-driven mitigation strategies, with a specific focus on synthetic data generation using Variational Autoencoders (VAEs) and Generative Adversarial Networks (GANs) to augment and balance datasets. The survey synthesizes the strengths and limitations of current approaches, emphasizing the trend towards multimodal integration and the persistent need for model interpretability and generalizability. Finally, we identify critical open challenges, including robust external validation, clinical integration, and ethical considerations, and outline promising future research directions such as hybrid models, causal inference, and federated learning. This review aims to consolidate current knowledge and guide future efforts in developing clinically relevant AI tools for personalized AD prognostication.
Abstract:This dissertation addresses the growing challenge of air traffic flow management by proposing a simulation-based optimization (SbO) approach for multi-objective runway operations scheduling. The goal is to optimize airport capacity utilization while minimizing delays, fuel consumption, and environmental impacts. Given the NP-Hard complexity of the problem, traditional analytical methods often rely on oversimplifications and fail to account for real-world uncertainties, limiting their practical applicability. The proposed SbO framework integrates a discrete-event simulation model to handle stochastic conditions and a hybrid Tabu-Scatter Search algorithm to identify Pareto-optimal solutions, explicitly incorporating uncertainty and fairness among aircraft as key objectives. Computational experiments using real-world data from a major U.S. airport demonstrate the approach's effectiveness and tractability, outperforming traditional methods such as First-Come-First-Served (FCFS) and deterministic approaches while maintaining schedule fairness. The algorithm's ability to generate trade-off solutions between competing objectives makes it a promising decision support tool for air traffic controllers managing complex runway operations.