Abstract:Simulation optimization (SO) is frequently challenged by noisy evaluations, high computational costs, and complex, multimodal search landscapes. This paper introduces Tabu-Enhanced Simulation Optimization (TESO), a novel metaheuristic framework integrating adaptive search with memory-based strategies. TESO leverages a short-term Tabu List to prevent cycling and encourage diversification, and a long-term Elite Memory to guide intensification by perturbing high-performing solutions. An aspiration criterion allows overriding tabu restrictions for exceptional candidates. This combination facilitates a dynamic balance between exploration and exploitation in stochastic environments. We demonstrate TESO's effectiveness and reliability using an queue optimization problem, showing improved performance compared to benchmarks and validating the contribution of its memory components. Source code and data are available at: https://github.com/bulentsoykan/TESO.




Abstract:This paper presents our research on leveraging social media Big Data and AI to support hurricane disaster emergency response. The current practice of hurricane emergency response for rescue highly relies on emergency call centres. The more recent Hurricane Harvey event reveals the limitations of the current systems. We use Hurricane Harvey and the associated Houston flooding as the motivating scenario to conduct research and develop a prototype as a proof-of-concept of using an intelligent agent as a complementary role to support emergency centres in hurricane emergency response. This intelligent agent is used to collect real-time streaming tweets during a natural disaster event, to identify tweets requesting rescue, to extract key information such as address and associated geocode, and to visualize the extracted information in an interactive map in decision supports. Our experiment shows promising outcomes and the potential application of the research in support of hurricane emergency response.